Tools for Statistical Analysis of Online Student Testing Results
Abstract
Full Text:
PDF (Russian)References
Al Lily, A. E., Ismail, A. F., Abunasser, F. M., Alqahtani, R., Alshumaimeri, Y. A., Albugami, S. S. (2020). Distance education as a response to pandemics: Coronavirus and Arab culture //Technology in society. – 2020. – Т. 63. – С. 101317.
Zhang Y., Lin C. H. Student interaction and the role of the teacher in a state virtual high school: what predicts online learning satisfaction? //Technology, Pedagogy and Education. – 2020. – Т. 29. – №. 1. – С. 57-71.
Khalil R. et al. The sudden transition to synchronized online learning during the COVID-19 pandemic in Saudi Arabia: a qualitative study exploring medical students’ perspectives //BMC medical education. – 2020. – Т. 20. – С. 1-10.
Magomedov, S., Ilin, D., Silaeva, A., Nikulchev, E. (2020). Dataset of user reactions when filling out web questionnaires. Data, 5(4), 108. doi: https://doi.org/10.3390/data5040108
Nikulchev, E., Ilin, D., Silaeva, A., Kolyasnikov, P., Malykh, S. (2020). Digital Psychological Platform for Mass Web-Surveys. Data, 5(4), 95. doi: https://doi.org/10.3390/data5040095
Nikulchev, E.; Gusev, A.; Ilin, D.; Gazanova, N.; Malykh, S. Evaluation of User Reactions and Verification of the Authenticity of the User’s Identity during a Long Web Survey. Apply Sciences. 2021, 11, 11034. doi: https://doi.org/10.3390/app112211034
Nikulchev E., Gusev A., Gazanova N,, Magomedov S., Alexeenko A., Malykh A., Kolyasnikov P., Malykh S. Engagement assessment for the educational web-service based on largest Lyapunov exponent calculation for user reaction time series // Education Sciences, 2023. Vol. 13, No. 2, P. 141. https://doi.org/10.3390/educsci13020141
Komleva N. V. "Digital tutor"-platform for creating online courses // Plekhanov Scientific Bulletin. - 2021. - №. 1. - С. 35-44.
V. F. Ochkov, A. I. Tikhonov, D. S. Leonova et al. Mathematics and new information technologies. Ending // Mathematical Education. 2021. № 2 (98). С. 34-43.
Tikhomirova T.N., Malykh S.B. Cognitive development of schoolchildren: the effects of macro- and microenvironmental conditions of education // Voprosy psychologii. 2021. № 67(5). С. 30-43.
Mõttus, R., Kattai, K., Allik, J., Realo, A. (2021). Combining item response theory and multivariate density modeling for detecting cheating in tests. Journal of Educational Measurement, 58(2), 207-227. doi: 10.1111/jedm.12251
Cizek, G. J. (2020). Detecting cheating in tests: A review and critique. Educational Measurement: Issues and Practice, 39(1), 47-54. doi: 10.1111/emip.12316
Jiao, H., Zou, H., Chen, Y., Qian, M. (2021). The identification of cheating behavior based on multimodal test response data: A clustering approach. Journal of Educational Data Mining, 13(1), 1-24.
Boruch, R. F., & Gormley Jr, W. T. (2022). Statistical methods for detecting test fraud. Annual Review of Statistics and Its Application, 9, 325-346. doi: 10.1146/annurev-statistics-042821-110259
Bruce P., Bruce E., Gedek P. Practical Statistics for Data Science Specialists: - SPb.: BHV-Peterburg, 2021.
Kovalchuk A. O., Kapitan V. Yu. Fundamentals of statistical and research data analysis in Python. - Vladivostok : FEFU Publishing House, 2021.
Chen, C., Wu, Y., & Huang, S. (2020). Identifying cheating behavior in online tests based on time-series data analysis. Computers & Education, 153, 103933. doi: 10.1016/j.compedu.2020.103933
Chen, C., Wu, Y., & Huang, S. (2020). Identifying cheating behavior in online tests based on time-series data analysis. Computers & Education, 153, 103933. doi: 10.1016/j.compedu.2020.103933
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность MoNeTec 2024
ISSN: 2307-8162