Application of physical video features in classification problem
Abstract
Full Text:
PDF (Russian)References
K. Sivaraman, G. Somappa, “Moviescope: Movie trailer classification using deep neural networks,” University of Virginia, 2016.
R. Zumer, S. Ratté, “Color-independent classification of animation video,” IJMIR, pp. 187–196, 2018.
Narra Dhana Lakshmi, Y. Madhavee Latha, A. Damodaram, K. Lakshmi Prasanna, “Implementation of Content Based Video Classification using Hidden Markov Model,” IEEE 7th International Advance Computing Conference, 2017.
K. Simonyan, A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” International Conference on Learning Representations, 2015.
O. Murashko, “Using machine learning to select and optimise multiple objectives in media compression,” PhD thesis, University of St. Andrews, 2018.
K. Simonyan, S. Grishin, D. Vatolin, D. Popov, “Fast video super-resolution via classification,” 15th IEEE International Conference on Image Processing, pp. 349–352, 2008.
F. Crete, T. Dolmiere, P. Ladret, M. Nicolas, “The Blur Effect: Perception and Estimation with a New No-Reference Perceptual Blur Metric,” Human Vision and Electronic Imaging XII, pp. 1–11, 2007.
R. Bansal, G. Raj, T. Choudhury, “Blur image detection using Laplacian operator and Open-CV,” IEEE System Modeling & Advancement in Research Trends, pp. 63–67, 2016.
TU-T Recommendation P.910: Subjective video quality assessment methods for multimedia applications, 1999. – 37 p.
Brailovskij I., Solomeshh N. Modelirovanie kachestva dlja videokodirovanija // Informacionnye tehnologii. – 2012. — #1 – S. 42–48.
Habibullina N.A., “Razrabotka novyh metodov analiza kachestva videokodekov i optimizacija sistem szhatija videoinformacii, Dissertacija na soiskanie uchenoj stepeni kandidata tehnicheskih nauk,” MFTI, 2014.
Parshin A. E., Glazistov I. V. Algoritm poiska dublikatov v baze videoposledovatel'nostej na osnove sopostavlenija ierarhii smen scen // Novye informacionnye tehnologii v avtomatizirovannyh sistemah. – 2009. – # 12. – S. 51–61.
Pedregosa et al., “Scikit-learn: Machine Learning in Python,” JMLR 12, pp. . 2825–2830, 2011.
T. Chen, C. Guestrin, “Xgboost: A scalable tree boosting system,” arXiv:1603.02754, 2016
K. Sivaraman, G. Somappa, MovieScope, GitHub repository, https://github.com/maximus009/MovieScope
x264, https://www.videolan.org/developers/x264.html
youtube-dl, https://rg3.github.io/youtube-dl/
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162