Study on Hermitian, Skew-Hermitian and Uunitary Matrices as a part of Normal Matrices
Abstract
Full Text:
PDFReferences
T. S. Motzkin and O. Taussky, Matrices with property L, Trans. Amer.
Math. Soc. vol. 73(1952), pp. 108-114.
I. Schur, Uber die characteristischem wurzeln einer linearen
substitutionen mit einer, Math. Ann. vol.66 (1909), pp. 488-510.
N. A. Wiegmann, A note on pairs of normal matrices with property L,
Amer. Math. Soc. (1952), pp. 35-36.
R. F. Rinchart, Skew matrices as square roots, Mathe. Asso. of
America, vol.2, No.2, (1960), pp.157-161.
R. Weitzenbock, Uber die matrixgleichung Nederl. Akad.
Wetensch. Proc., vol. 35, (1932), pp.157-161.
P. Franklin, Algebraic matrix equations, J. Math. Phys., vol. 10, (1932),
pp. 135-143.
K. Soda, Einige satze uber matrizen, Japan J. Math, 13(1936), pp. 361-
A. A. Albert and B. Muckenhoupt, On matrices of trace zero, Michigan
Math. J. 4(1957), 1- 3, MR 18, pp. 786.
C. R. Johnson, A note on matrix solutions to A = XY – YX, Amer.
Mathe. Soc. Vol. 42, No. 2(1974), pp. 351-353.
F. Gaines, A note on matrices with zero trace, Amer. Math. Monthly,
(1968), MR 33#7356, pp. 630-631.
W. V. Parker, Sets of complex numbers associated with a matrix,
Duke Mathe. J., 15(1948), MR 10, 230, pp. 711-715.
S. Friedland, Matices with prescribed off diagonal elements, Israel J.
Math. 11(1972), pp. 184-189.
G. Finke, R. E. Burkard and F. Rendl, Quadratic assignment
problems, Ann. Discrete Math., 31(1987), pp. 61-82.
E. R. Bernes and A. J. Hoffman, Bounds for the spectrum of normal
matrices, Linear Algebra and its Appl., 79(1994), pp. 79-90.
O. Taussky, A generalization of a theorem of Liapunov, J. Soc. Indust.
Appl. Math., 9(1961), pp. 640-643.
G. P. Barker, Normal matrices and the Lyapunov equations, SIAM J.
Appl. Math., vol. 21, No.1(1974), pp. 1-4.
A. Ostrowski and H. Schneider, Some theorems on the inertia of
general matrices, J. Math. Anal. Appl., 4(1962), pp. 72-84.
O. Taussky, A remark on a theorem of Lyapunov, J, Math. Anal.
Appl., 2(1961), pp. 105- 107.
G. P. Barker, Common solutions to the Lyapunov equations, Linear
Algebra and its Appl., 16(1977), pp. 233-235.
Robert Grone, C. R. Johnson, E. M. Sa. and H. Wolkowicz (GJSW),
Linear Algebra and its Appl., 87(1987), pp. 213-225.
L. Elsner and Kh. D. Ikramov, Normal matrices: An update, Linear
Algebra and its Appl., 285(1998), pp. 291-303.
M. Sadkane, A note on normal matrices, J. of Computational and
Applied Mathematics, 136(2001), pp. 185-187.
J. F. Querio, On the eigen values of normal matrices, Dept. of Mathe.,
Universidade de Coimbra, 3000 Coimbra, Portugal, 2001.
J. A. Ball, I. Gohberg and L. Rodman, Interpolation of rational matrix
functions, OT45, Birkhauser-Verlag, Basel, Switzerland, 1990.
H. Kimara, Chain-Scattering approach to control, Birkhauser
Boston, Boston, 1997.
N. J. Higham, J. orthogonal matrices: properties and generation, SIAM
Rev., 45(2003), pp. 505-519.
Yik-Hoi Au-Yeung, Chi-Cwong Li and Leiba Rodman, H-unitary and
Lorentz matrices: A review, SIAM J. Matrix Anal. Appl., vol. 25,
No.4(2004), pp. 1140-1162.
Kh. D. Ikramov, Conjugate normal matrices and matrix equations in
A, and AT , Doklady Mathematics, vol. 75, No.1(2007), pp. 55-
Kh. D. Ikramov, On condiagonalizable matrices, Linear Algebra and
its Appl., 429(2007), pp. 456-465.
R. Bhatia, Perturbation bounds for matrix eigen values, Wiley Pub.,
New York, 1987.
Kh. D. Ikramov, The condition of the coneigen values of conjugate-
normal matrices, Doklady Mathematics, vol. 77, No. 3(2008), pp.
-390.
R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University
Press, Cambridge, 1990.
H. Faβbender, Kh. D. Ikramov, Conjugate normal matrices: A survey,
Linear Algebra and its Appl., 429(2008), pp. 1425-1441.
Kh. D. Ikramov, Zh. Vychisl Mat. Mat. Fiz. 34 (1994), pp. 473-479.
Kh. D. Ikramov, Mat. Zametki 57, (1995), pp. 670-680.
Kh. D. Ikramov and V. N. Chugunov, Zh. Vychisl. Mat. Mat. Fiz. 36,
(1996), pp. 3-10.
Kh. D. Ikramov, Fandam. Prinkl. Mat. 3, (1997), pp. 809-819.
Kh. D. Ikramov and V. N. Chugunov, Veston. Mosk. Univ. Ser. 15,
Vychisl. Mat. Kibern, No. 1, (2007), pp. 10-13.
G. Gu and L. Patton, SIAM J. Matrix analysis. Appl. 24, (2003), pp.
-746.
Kh. D. Ikramov and V. N. Chugunov, Zap. Nauchn Semin. POMI
, (2007), pp. 63-80.
Kh. D. Ikramov and V. N. Chugunov, Classification normal Hankel
matrices, Doklady Mathematics, vol. 79, No. 1, (2009), pp. 114-117.
Miclo Ferranti and Ref Vandebril, Computing eigen values of normal
matrices via complex symmetric matrices, J. of Computational
Mathe., vol. 259, A(2013), pp. 281-293.
G. H. Colub, C. F. Van Loan, Matrix computations, 3 rd Edition,
Johns Hopkins University Press, Baltimore, Maryland, USA, 1996.
D. S. Watkins, The matrix eigen value problem, GR and Krylov
subspace methods, SIAM, Philadelphia, Pensylvania, USA, 2007.
Ref Vandebril, A unitary similarity transforms of a normal matrix to
complex symmetric from, Appl. Mathe. Letters, vol. 24, 2 (2011), pp.
-164.
C. G. Khatri, Powers of matrices and idempotency, Linear Algebra
Appl., 33 (1980), pp. 57- 65.
J. GroB, Idempotency of the hermitian part of a complex matrix,
Linear Algebra Appl., 289 (1999), pp. 135-139.
D. Ilisevic and N. Thome, When is the hermitian / skew hermitian part
of a matrix a potent matrix, J. of Linear Algebra, Int. Linear Algebra
Soc., vol. 24 (2012), pp. 94-112.
L. Brand, On the product of singular symmetric analysis, Proc. Amer.
Math. Soc., 22 (1969), p. 377.
D. Z. Djokovic, A determinantal inequality for projects in a unitary
space, Proc. Amer. Math. Soc., 27 (1971), pp. 19-23.
M. Lin, Orthogonal sets of normal or conjugate normal matrices,
Linear Algebra and its Appl., 483 (2015), pp. 227-235.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162