Computer models for saltatory and continuous knowledge increase in teaching

Р.В. Майер

Abstract


The problem of imitating modeling of didactic systems is discussed; are considered: 1) one–, two–, and three–component models of intermittent increase of knowledge; 2) the three–component model of continuous increase of knowledge which demands the numerical solution of the differential equations. It is supposed that total knowledge of the pupil consists of weak knowledge, strong knowledge and very strong (firm) knowledge which can transform itself one in another. Two programs written in the environment of Free Pascal are submitted, results of modeling are given

Full Text:

PDF (Russian)

References


Krol' V.M. Psihologija i pedagogika: Ucheb. posobie dlja tehn. vuzov. – M .: Vyssh. Shk., 2001. – 319 s.

Kudrjavcev V. B. Ob avtomatnom modelirovanii processa obuchenija / V.B.Kudrjavcev, K.Vashik, A.S. Strogalov i dr. // Diskretnaja matematika. – 1996. – Vyp. 4. – T. 8. – C. 3–10.

Leont'ev L. P., Gohman O. G. Problemy upravlenija uchebnym processom: matematicheskie modeli. – Riga, 1984. – 239 s.

Majer R.V. Issledovanie sistemy "uchitel'–uchenik" s pomoshh'ju komp'juternoj mnogokomponentnoj modeli obuchenija. – Nauchnye issledovanija i razrabotki. Social'no–gumanitarnye issledovanija i tehnologii. – 2014. – N 4. – S. 53–56.

Majer R.V. Kiberneticheskaja pedagogika: Imitacionnoe modelirovanie processa obuchenija. – Glazov: Glazov. gos. ped. in–t, 2014. – 141 s.

Majer R.V. Komp'juternaja dvuhkomponentnaja verojatnostnaja model' izuchenija discipliny // Sovremennoe obrazovanie. — 2015. – N 1. – S. 42 – 52. DOI: 10.7256/2409-8736.2015.1.13701. URL: http://e-notabene.ru/pp/article_13701.html

Majer R.V. Uchet izmenenija prochnosti znanij pri obuchenii: modelirovanie v jelektronnyh tablicah Excel // Sovremennye nauchnye issledovanija i innovacii. – 2015. – # 1 [Jelektronnyj resurs]. URL: http://web.snauka.ru/issues/2015/01/45010

Roberts F.S. Diskretnye matematicheskie modeli s prilozhenijami k social'nym, biologicheskim i jekologicheskim zadacham. – M.: Nauka, Gl. red. fiz. –mat. lit., 1986. –– 496 s.

Solodova E. A., Antonov Ju. P. Matematicheskoe modelirovanie pedagogicheskih sistem // “Matematika. Komp'juter. Obrazovanie”. Sbornik trudov XXII mezhdunarodnoj konferencii. Ch. 1. – Izhevsk, 2005. – S. 113 – 121.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность MoNeTec 2024

ISSN: 2307-8162