The Phenomenon of Stochastic Metamodeling of Neuro-Digital Scientific and Educational Ecosystems

Sergey Kramarov, Oleg Popov, Igor Temkin

Abstract


One of the key trends in recent years is the possibility of creating and transforming knowledge based on the digital educational ecosystem and artificial intelligence. The concept of stochastic metamodeling of neuro-digital scientific and educational ecosystems (NDSEE) is proposed – the phenomenon of digital twins simulating organizational systems with a pronounced character of knowledge transfer. The implemented methodology combines network analysis models (Мn approach) and probabilistic models of distributive semantics (Мs approach). A neural network approach to clustering information search results posted in scientific bibliographic, academic, educational databases and external network resources is substantiated. The general results of the approbation of the proposed approach based on data processing of citation networks of scientific publications and networks of scientific terms compiled from samples of bibliographic databases arXiv, Scopus and Google Scholar are considered. Graphical results of modeling the probability of reaching the percolation threshold of networks of quotations from the arXiv section on theoretical high-energy physics hep-th are presented.  Verification of the existence of mechanisms of interaction between the M and We models confirms that the method we present is working. The theoretical significance of the research lies in the development of new approaches to the complex stochastic modeling of the effectiveness of dynamic NDSEE using original computational methods and algorithms..


Full Text:

PDF (Russian)

References


Klejner G. B. Evolyuciya institucional'nyh sistem. M. : Nauka, 2004. 240 s..

Popov, O. R. Sposob poiska parametrov poryadka samoorganizuyushchihsya sistem: informacionnyj aspekt / O. R. Popov // Intellektual'nye resursy - regional'nomu razvitiyu. – 2020. – № 2. – S. 64-70. URL: https://www.elibrary.ru/item.asp?id=43033193.

Eremin A. L. Noogenez i teoriya intellekta. Krasnodar: SovKub, 2005. — 356 s.

Haken G. Informaciya i samoorganizaciya. Makroskopicheskij podhod k slozhnym sistemam. – M.: Mir, 1991. – 240 s.

Popov, O. R. Algoritmy postroeniya intellektual'nyh sistem obrabotki tekstovoj informacii dlya zadachi analiza mnenij / O.R. Popov, E.V. Grebenyuk // Intellektual'nye resursy - regional'nomu razvitiyu. – 2021. URL: https://www.elibrary.ru/item.asp?id=46659138.

Temkin I. O., Klebanov D. A., Deryabin S. A., Konov I. S. Postroenie intellektual'noj geoinformacionnoj sistemy gornogo predpriyatiya s ispol'zovaniem metodov prognoznoj analitiki // Gornyj informacionno-analiticheskij byulleten'. – 2020. – № 3. – S. 114–125. DOI: 10.25018/0236-1493-2020-3-0-114-125.

Popov, O. R. Phenomenon of Information and Informational Ecology: Interaction and Definitions on the Language of Soft Computing / O. R. Popov, B. V. Martynov // 14th International Conference on Theory and Application of Fuzzy Systems and Soft Computing – ICAFS-2020, Budva, Montenegro, 27–28 августа 2020 года. – Budva, Montenegro: Springer International Publishing, 2021. – P. 694-701. URL: https://elibrary.ru/item.asp?id=46509214.

About Some Issues of Developing Digital Twins for The Intelligent Process Control in Quarries / Deryabin, S.A., Temkin, I.O., Zykov, S.V. // Procedia Computer Science, 2020, 176, P. 3210–3216.

Shpakov, Yu. Fundamental'nye principy iskusstvennogo intellekta. - M.: Izdatel'stvo "Forum", 2016. - 240 s.

McTear M., Callejas Z. A Brief History of Artificial Intelligence / M. McTear, Z. Callejas. – 2016. – 152 p. – ISBN 978-3319265521.

Kallan R. Osnovnye koncepcii nejronnyh setej = The Essence of Neural Networks First Edition. — M.: Vil'yams, 2001. — 288 s.

Soldatenko, D.M. Iskusstvennyj intellekt: proshloe, nastoyashchee i budushchee[Elektronnyj resurs]/ D.M. Soldatenko // Rossijskij vneshneekonomicheskij vestnik. — 2020. — №9. — Rezhim dostupa: http://surl.li/acvkn (data obrashcheniya: 30.10.2024).

Andryushkova O.V., Grigor'ev S.G. Emergentnaya sistema obucheniya // Informatika i obrazovanie. 2017;(7):17-20.

Vozmozhnosti sochetaniya estestvennogo i iskusstvennogo intellektov v obrazovatel'nyh sistemah / A. M. Abdullaeva, E. V. Averchenko, T. S. Aleksandrova [i dr.]. – Moskva : Izdatel'skij Centr RIOR, 2023. – 232 s. – ISBN 978-5-369-02124-8. – DOI 10.29039/02124-8.

Iskusstvennyj intellekt v obrazovanii: vozmozhnosti, metody i rekomendacii dlya pedagogov / E. V. Grebenyuk, D. G. Danielyan, S. S. Danielyan, S. O. Kramarov. – Moskva : OOO "Izdatel'skij Centr RIOR", 2024. – 99 s. – ISBN 978-5-369-02147-7. – DOI 10.29039/02147-7. – EDN RSOJQJ.

Pavlyuk, E.S. Analiz zarubezhnogo opyta vliyaniya iskusstvennogo intellekta na obrazovatel'nyj process v vysshem uchebnom zavedenii/ E.S. Pavlyuk //Sovremennoe pedagogicheskoe obrazovanie —2020. —№ 1. — S. 65-72.

Osnovy sozdaniya nejro-cifrovyh ekosistem. Gibridnyj vychislitel'nyj intellekt / A. A. Fedorov, I. V. Liberman, S. I. Koryagin [i dr.]. – 3-e izdanie, dopolnennoe. – Kaliningrad : Baltijskij federal'nyj universitet imeni Immanuila Kanta, 2021. – 241 s. – ISBN 978-5-9971-0636-2. – EDN DQUXRR.

Inkremental'noe obuchenie tematicheskih modelej dlya poiska trendovyh tem v nauchnyh publikaciyah / N. A. Gerasimenko, A. S. Chernyavskij, M. A. Nikiforova [i dr.] // Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniya. – 2022. – T. 508, № 1. – S. 106-108.Language models are few-shot learners / / Advances in Neural Information Processing Systems / Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin. — Vol. 33. — Curran Associates, Inc., 2020. — Pp. 1877-1901.Levitin A. V. Algoritmy. Vvedenie v razrabotkuianaliz — M.: Vil'yams, 2006. — 576 p.

Language models are few-shot learners / / Advances in Neural Information Processing Systems / Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin. — Vol. 33. — Curran Associates, Inc., 2020. — Pp. 1877-1901.

Voroncov K. V. Veroyatnostnoe tematicheskoe modelirovanie: teoriya regulyarizacii ARTM i biblioteka s otkrytym kodom BigARTM. 2023. [Elektronnyj resurs]. URL: http://www.machinelearning.ru/wiki/images/d/d5/Voron17survey-artm.pdf (data obrashcheniya: 30.10.2024).

Ming Li, Run-Ran Liu, Linyuan Lu, Mao-Bin Hu, Shuqi Xu, Yi-Cheng Zhang. Percolation on complex networks: Theory and application. Physics Reports. 907: 1–68. DOI: 10.1016/j.physrep.2020.12.003.

Popov, O. R. Issledovanie rasprostraneniya informacii v setyah, strukturirovannyh iz nabora prognosticheskih terminov. / O.R. Popov, S.O. Kramarov // Vestnik kibernetiki. – 2022. – № 1(45). – S. 38-45. – DOI 10.34822/1999-7604-2022-1-38-45.

Dinamika formirovaniya svyazej v setyah, strukturirovannyh na osnove prognosticheskih terminov / S. O. Kramarov, O. R. Popov, I. E. Dzhariev, E. A. Petrov // Russian Technological Journal. – 2023. – T. 11, № 3. – S. 17-29. – DOI 10.32362/2500-316X-2023-11-3-17-29.

Perkolyaciya i formirovanie svyaznosti v dinamike setej citirovaniya dannyh po fizike vysokih energij / S. O. Kramarov, O. R. Popov, I. E. Dzhariev, E. A. Petrov // Russian Technological Journal, prinyato k publikacii.

Popov O. R., Grosu A., Kramarov S. O. Kompleksnyj setevoj algoritm formirovaniya glossariya kontekstno-blizkih prognosticheskih terminov // Sovremennye informacionnye tekhnologii i IT-obrazovanie. [S.l.], v. 19, n. 3, p. 684-695, oct. 2023. ISSN 2411-1473.doi: https://doi.org/10.25559/SITITO.019.202304.684-695 (data obrashcheniya: 30.10.2024).

Zhukov D. O., Hvatova T. Yu., Zal'cman A. D. Modelirovanie stohasticheskoj dinamiki izmeneniya sostoyanij uzlov i perkolyacionnyh perekhodov v social'nyh setyah s uchetom samoorganizacii i nalichiya pamyati // Informatika i ee primeneniya. — 2021. — T. 15. — № 1. — S. 102—110. — https://doi.org/10.14357/19922264210114.

Popov, O. R. Adaptaciya mirovyh praktik k probleme dolgosrochnogo tekhnologicheskogo prognozirovaniya sostoyaniya samoorganizuyushchihsya intellektual'nyh sistem / O.R. Popov // Intellektual'nye resursy - regional'nomu razvitiyu. – 2021. URL: https://www.elibrary.ru/item.asp?id=46659136 (data obrashcheniya: 30.10.2024).


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность ИБП для ЦОД СНЭ

ISSN: 2307-8162