Unsupervised anomaly detection on cybersecurity data streams: a case with BETH dataset
Abstract
Full Text:
PDFReferences
Bouman, R., Bukhsh, Z., & Heskes, T. (2024). Unsupervised anomaly detection algorithms on real-world data: how many do we need?. Journal of Machine Learning Research, 25(105), 1-34.
Lu, T., Wang, L., & Zhao, X. (2023). Review of Anomaly Detection Algorithms for Data Streams. Applied Sciences, 13(10), 6353.
Sánchez-Zas, C., Larriva-Novo, X., Villagrá, V. A., Rodrigo, M. S., & Moreno, J. I. (2022). Design and Evaluation of Unsupervised Machine Learning Models for Anomaly Detection in Streaming Cybersecurity Logs. Mathematics, 10(21), 4043.
Heigl, M., Weigelt, E., Fiala, D., & Schramm, M. (2021). Unsupervised Feature Selection for Outlier Detection on Streaming Data to Enhance Network Security. Applied Sciences, 11(24), 12073.
Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., & Robinson, S. (2017, February). Deep Learning for Unsupervised Insider Threat Detection in Structured Cybersecurity Data Streams. In AAAI Workshops (pp. 224-231).
Artioli, P., Maci, A., & Magrì, A. (2024). A comprehensive investigation of clustering algorithms for User and Entity Behavior Analytics. Frontiers in big Data, 7, 1375818.
Almodovar, C., Sabrina, F., Karimi, S., & Azad, S. (2024). LogFiT: Log anomaly detection using fine-tuned language models. IEEE Transactions on Network and Service Management, 21(2), 1715-1723.
Gorokhov, O., Petrovskiy, M., Mashechkin, I., & Kazachuk, M. (2023). Fuzzy CNN Autoencoder for Unsupervised Anomaly Detection in Log Data. Mathematics, 11(18), 3995.
Kotenko, I. V., Melnik, M. V., & Abramenko, G. T. (2024, June). Anomaly Detection in Container Systems: Using Histograms of Normal Processes and an Autoencoder. In 2024 IEEE 25th International Conference of Young Professionals in Electron Devices and Materials (EDM) (pp. 1930-1934). IEEE.
Highnam, K., Arulkumaran, K., Hanif, Z., & Jennings, N. R. (2021). Beth dataset: Real cybersecurity data for unsupervised anomaly detection research. In CEUR Workshop Proc (Vol. 3095, pp. 1-12).
Lakha, B., Mount, S. L., Serra, E., & Cuzzocrea, A. (2022, December). Anomaly detection in cybersecurity events through graph neural network and transformer based model: A case study with beth dataset. In 2022 IEEE International Conference on Big Data (Big Data) (pp. 5756-5764). IEEE.
Sushmakar, N., Oberoi, N., Gupta, S., & Arora, A. (2022, June). An unsupervised based enhanced anomaly detection model using features importance. In 2022 2nd International Conference on Intelligent Technologies (CONIT) (pp. 1-7). IEEE.
Khan, L. P., Hossain, A., & Dey, S. (2023, February). Anomaly Detection for Beth Dataset Using Machine Learning Approaches. In 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp. 1-6). IEEE.
Security Observability with eBPF, Natália Réka Ivánkó and Jed Salazar, O'Reilly, 2022
Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G., Sourty, R., Vaysse, R., Bifet, A. (2021). River: machine learning for streaming data in python. Journal of Machine Learning Research, 22(110), 1-8.
Yilmaz, S. F., & Kozat, S. S. (2020). PySAD: A streaming anomaly detection framework in python. arXiv preprint arXiv:2009.02572.
Xu, J., Lin, C., Liu, F., Wang, Y., Xiong, W., Li, Z., ... & Xie, G. (2023). StreamAD: A cloud platform metrics-oriented benchmark for unsupervised online anomaly detection. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(2), 100121.
Ding, Z., & Fei, M. (2013). An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proceedings Volumes, 46(20), 12-17.
Zhao, Y., Nasrullah, Z., & Li, Z. (2019). Pyod: A python toolbox for scalable outlier detection. Journal of machine learning research, 20(96), 1-7.
Pokrajac, D., Lazarevic, A., & Latecki, L. J. (2007, March). Incremental local outlier detection for data streams. In 2007 IEEE symposium on computational intelligence and data mining (pp. 504-515). IEEE.
Mirsky, Y., Doitshman, T., Elovici, Y., & Shabtai, A. (2018). Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv preprint arXiv:1802.09089.
Pevný, T. (2016). Loda: Lightweight on-line detector of anomalies. Machine Learning, 102, 275-304.
Guha, S., Mishra, N., Roy, G., & Schrijvers, O. (2016, June). Robust random cut forest based anomaly detection on streams. In International conference on machine learning (pp. 2712-2721). PMLR.
Sathe, S., & Aggarwal, C. C. (2016, December). Subspace outlier detection in linear time with randomized hashing. In 2016 IEEE 16th International Conference on Data Mining (ICDM) (pp. 459-468). IEEE.
Angiulli, F., & Fassetti, F. (2007, November). Detecting distance-based outliers in streams of data. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge management (pp. 811-820).
Manzoor, E., Lamba, H., & Akoglu, L. (2018, July). XStream: Outlier detection in feature-evolving data streams. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1963-1972).
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. The Journal of machine Learning research, 12, 2825-2830.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИБП для ЦОД СНЭ
ISSN: 2307-8162