Motion Dynamics of a Three-Wheeled Transmission Cargo Platform in Special Modes

S.F. Jatsun, E.V. Saveleva, E.N. Politov

Abstract


The paper discusses a mobile robotic platform designed for autonomous transportation of small volumes of payloads to specified points within the territory designated by the operator. The dynamic characteristics of a mobile robotic platform (MRP) with a three-wheel transmission in special driving modes are studied. Modes or positions in which the point of zero moment approaches the boundary of the reference polygon or goes beyond it are called special. Controlling the position of the zero moment point, as well as monitoring the position of the system’s center of mass, makes it possible to ensure the stability of the platform under study from tipping over when moving in special motion modes. The solution to this problem allows us to reduce the time for installing and securing the load on the platform, up to the complete elimination of this technological operation. This solves the important production problem of increasing the productivity of the cargo transportation process. Within the framework of this work, a study is carried out of the conditions under which the occurrence of special regimes is excluded and the stable position of the system is guaranteed. The dynamics of the MRP during rectilinear motion at the moment of acceleration and braking is investigated. To achieve this goal, the following tasks were solved during the study: - a mathematical model of the system’s motion was developed; the conditions for sustainable movement of MCI are formulated; the maximum permissible acceleration of the platform during straight-line motion at the time of acceleration and braking was determined; the boundary positions of the zero moment point are determined.


Full Text:

PDF (Russian)

References


DOI: 10.25559/INJOIT.2307-8162.12.202404.37-45

K. Asadi et al., “Vision-based integrated mobile robotic system for real-time applications in construction ,” Automation in Construction, vol. 96, pp. 470-482, 2018.

F.A.A. Cheein et al., “SLAM algorithm applied to robotics assistance for navigation in unknown environments,” Journal of neuroengineering and rehabilitation, vol. 7, no. 1, pp. 1-16, 2010.

L. D'Alfonso, A. Griffo, P. Muraca, P. Pugliese, “A SLAM algorithm for indoor mobile robot localization using an Extended Kalman Filter and a segment based environment mapping,” In 2013 16th International Conference on Advanced Robotics (ICAR), IEEE, 2013, November, pp. 1-6.

E. Politov, D. Afonin, V. Bartenev, “Mathematical modeling of motion of a two-section wheeled robot,” In Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”, Springer, 2020, pp. 397-409.

E. Saveleva, E. Politov, “Highly Maneuverable Small-Sized Wheeled Mobile Robotic Construction Platform,” Frontiers in Robotics and Electromechanics. Springer Nature Singapore, 2023, pp. 403-417.

U. Saranli, A. Avci, M.C. Öztürk, “A modular real-time fieldbus architecture for mobile robotic platforms,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 3, pp. 916-927, 2010.

W.Y. Shin et al., “Line segment selection method for fast path planning,” International Journal of Control, Automation, and Systems, vol. 15, no. 3, p. 1322, 2017.

K. Yousif, A. Bab-Hadiashar, R. Hoseinnezhad, “An overview to visual odometry and visual SLAM: Applications to mobile robotics,” Intelligent Industrial Systems, vol. 1, no. 4, pp. 289-311, 2015.

M.N. Artemenko, P.A. Korchagin, I.A. Teterina, “Tendencii razvitija mobil'nyh bespilotnyh robotizirovannyh kompleksov. Opyt otechestvennyh i zarubezhnyh proizvoditelej,” Vestnik Sibirskoj gosudarstvennoj avtomobil'no-dorozhnoj akademii, vol. 16, no. 4 (68), pp. 416-430, 2019. [In Rus]

A.V. Bannikov, K.S. Lel'kov, “Navigacija robotizirovannoj sistemy monitoringa defektov naruzhnoj poverhnosti vozdushnogo sudna na ego stojanke,” In Material. HXIII konferencii molodyh uchenyh Navigacija i upravlenie dvizheniem, SPb., 2021, pp. 82-84. [In Rus]

P.A. Bezmen, K.G. Kazarjan, “Mobil'nyj kolesnyj robot "X6WD", osnashhennyj sistemoj manipuljatorov,” In Sb. nauchnyh statej XI Mezhdunarodnoj nauchno-tehnicheskoj konf. Vibracionnye tehnologii, mehatronika i upravljaemye mashiny. Ch. 2. Kursk, 2014, pp. 152-161. [In Rus]

A.M. Beljaev, D.V. Zezjulin, D.Ju. Tjugin, A.A. Kurkin, “Razrabotka avtonomnogo mobil'nogo robototehnicheskogo kompleksa dlja kontrolja i diagnostiki prirodnoj sredy v pribrezhnyh rajonah,” In Sb. trudov IV mezhdunarodnoj nauchno-prakticheskoj konf. Innovacii na transporte i v mashinostroenii. V. IV. SPb., 2016, pp. 6-9. [In Rus]

V.V. Beljakov, A.A. Kurkin, D.V. Zezjulin, V.S. Makarov, “Shassi robototehnicheskogo kompleksa monitoringa pribrezhnoj zony,” Trudy NGTU im. RE Alekseeva, no. 4 (106), pp. 353-357, 2014. [In Rus]

A. Bulgakov, V. Vorob'ev, Promyshlennye roboty. Kinematika, dinamika, kontrol' i upravlenie.Litres, 2020. [In Rus]

K.V. Zashhelkin, V.V. Kalinichenko, N.O. Ul'chenko, Kombinirovannyj sposob navigacii avtonomnogo mobil'nogo robota,” In MNPK «Sovremennye informacionnye i jelektronnye tehnologii». Odessa, 2013, pp. 174-177. [In Rus]

V.M. Kartashov, V.A. Pososhenko, R.I. Cehmistro, L.P. Timoshenko, M.M. Kolendovskaja, “Metody orientacii, navigacii i kontrolja mobil'nyh robototehnicheskih platform,” Radiotekhnika, no. (199), pp. 38-44, 2019. [In Rus]

A.Je. Kubalov, A.H. Glashev, ..., S.A. Sinenko, “Ispol'zova-nie mobil'nyh robotov pri razvedke mestnosti v stroitel'nom dele,” Tochnaja nauka, no. 4, pp. 39-45, 2017.

O.G. Loktionova, E.V. Saveleva, ”Algoritm upravlenija dvizheniem mobil'noj robotizirovannoj platformy s izmenjaemym urovnem avtonomnosti,” International Journal of Open Information Technologies, vol. 11, no. 4, pp. 29-37, 2023.

J.G. Martynenko, “Upravlenie dvizheniem mobil'nyh kolesnyh robotov,” Fundamental'naja i prikladnaja matematika, no. 8, c. 29-80, 2005; S..Nabijullin A.R., Kavalerov M.V. Mnogocelevaja kolesnaja robotizirovannaja platforma s nizkoj sebestoimost'ju. Extreme Robotics, vol. 1, no. 1, pp. 70-79, 2013.

R.A. Munasypov, T.R. Shahmamet'ev, S.S. Moskvichev, “Teleupravljaemyj diagnosticheskij kompleks na osnove robota vysokoj mobil'nosti,” Extreme Robotics, no. 1 (25), pp. 84-93, 2014. [In Rus]

R.A. Munasypov i dr., “Robotizirovannaja platforma vysokoj mobil'nosti dlja zadach diagnostiki jelementov sudovyh konstrukcij,” Extreme Robotics, no. 1 (27), p. 389-393, 2016. [In Rus]

E.A. Mjasnikova, “Osobennosti organizacii gorodskoj sredy v uslovijah razvitija bespilotnyh logisticheskih sistem,” Innovacii i investicii, no 7, pp. 361-364, 2023. [In Rus]

V.E. Pavlovskij, V.V. Pavlovskij, “Tehnologii SLAM dlja podvizhnyh robotov: sostojanie i perspektivy,” Mehatronika, avtomatizacija, upravlenie, vol. 17, no 6, pp. 384-394, 2016 [In Rus]

E.V. Saveleva, “Robotizirovannye sistemy dlja ukladki melkoshtuchnyh jelementov pri vozvedenii sten malojetazhnyh zhilyh zdanij,” In Sb. 2-j Mezhdunarodnoj nauchnoj konferencii perspektivnyh razrabotok molodyh uchenyh Nauka molodyh-budushhee Rossii. V. 5. Kursk, 2017, pp. 160-163. [In Rus]

S.G. Carichenko, “Jekstremal'naja robototehnika v MChS Rossii-zadachi i perspektivy,” Safety & Fire Technology, vol. 28, pp. 97–104, 2012. [In Rus]

D.E. Chikrin, A.A. Egorchev, S.V. Golousov, P.A. Savinkov, D. N. Tumakov. Ispol'zovanie dinamicheskih refleksivnyh grafov pri reshenii zadach planirovanija puti i takticheskogo upravlenija robotizirovannoj kolesnoj platformoj,” Izvestija vysshih uchebnyh zavedenij. Povolzhskij region. Tehnicheskie nauki, no 4 (48), pp. 75-87, 2018. [In Rus]

S.F. Jatcun, V.V. Bartenev, E.N. Politov, D.V. Afonin, “Modelirovanie dvizhenija robota-tjagacha dlja transportirovki samoletov po ajerodromu,” Izvestija Jugo-Zapadnogo gosudarstvennogo universiteta, no. 22(2), pp. 34-43, 2018. [In Rus]


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность IT Congress 2024

ISSN: 2307-8162