Text analysis of Social Media comments for assessing the social well-being of metropolitan residents (St. Petersburg's example)
Abstract
Full Text:
PDF (Russian)References
Loukachevitch N., Levchik A. Creating a general Russian sentiment lexicon // Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16). 2016. P. 1171-1176.
Koltsova O.Y., Alexeeva S., Kolcov S. An opinion word lexicon and a training dataset for Russian sentiment analysis of social media // Computational Linguistics and Intellectual Technologies: Materials of DIALOGUE. 2016. Vol. 2016. P. 277-287.
Cambria E., Poria S., Bajpai R., Schuller B. SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives // Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics. 2016. P. 2666-2677.
Baccianella S. et al. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining // Lrec. 2010. Vol. 10. No. 2010. P. 2200-2204.
Gatti L., Guerini M., Turchi M. SentiWords: Deriving a high precision and high coverage lexicon for sentiment analysis // IEEE Transactions on Affective Computing. 2015. Vol. 7. No. 4. P. 409-421.
Baziotis C. et al. Ntua-slp at semeval-2018 task 3: Tracking ironic tweets using ensembles of word and character level attentive rnns // arXiv preprint. 2018. arXiv:1804.06659.
Baziotis C., Pelekis N., Doulkeridis C. Datastories at semeval-2017 task 4: Deep lstm with attention for message-level and topic-based sentiment analysis // Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017). 2017. P. 747-754.
Meškelė D., Frasincar F. ALDONAr: A hybrid solution for sentence-level aspect-based sentiment analysis using a lexicalized domain ontology and a regularized neural attention model // Information Processing & Management. 2020. Vol. 57. No. 3. P. 102211.
Mikolov T., Sutskever I., Chen K., Corrado G., Dean J. Distributed representations of words and phrases and their compositionality // Advances in neural information processing systems. 2013. Vol. 26. P. 3111-3119.
Pennington J., Socher R., Manning C. D. Glove: Global vectors for word representation // Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014. P. 1532-1543.
Joulin A., Grave E., Bojanowski P., Mikolov T. Bag of tricks for efficient text classification // Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. 2017. Vol. 2. P. 427-431.
Lee K., Filannino M., Uzuner Ö. An Empirical Test of GRUs and Deep Contextualized Word Representations on De-Identification // MedInfo. 2019. P. 218-222.
Devlin J., Chang M.-W., Lee K., Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding // Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2018. Vol. 1. P. 4171-4186.
Chizhik A., Zherebtsova Y. Challenges of Building an Intelligent Chatbot // IMS. 2020. P. 277-287.
Sboev A., Naumov A., Rybka R. Data-driven model for emotion detection in Russian texts //Procedia Computer Science. 2021. Vol. 190. P. 637-642
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162