About AI Red Team
Abstract
Full Text:
PDF (Russian)References
Google's AI Red Team: the ethical hackers making AI safer https://blog.google/technology/safety-security/googles-ai-red-team-the-ethical-hackers-making-ai-safer/ Retrieved: 07.09.2023.
Microsoft AI Red Team building future of safer AI https://www.microsoft.com/en-us/security/blog/2023/08/07/microsoft-ai-red-team-building-future-of-safer-ai/ Retrieved: 07.09.2023.
OpenAI’s red team: the experts hired to ‘break’ ChatGPT https://archive.is/xu0wS#selection-1437.0-1437.55 Retrieved: 07.09.2023.
Ge, Yingqiang, et al. "Openagi: When llm meets domain experts." arXiv preprint arXiv:2304.04370 (2023).
Ilyushin, Eugene, Dmitry Namiot, and Ivan Chizhov. "Attacks on machine learning systems-common problems and methods." International Journal of Open Information Technologies 10.3 (2022): 17-22. (in Russian)
Namiot, Dmitry. "Schemes of attacks on machine learning models." International Journal of Open Information Technologies 11.5 (2023): 68-86. (in Russian)
Namiot, Dmitry, and Eugene Ilyushin. "On the robustness and security of Artificial Intelligence systems." International Journal of Open Information Technologies 10.9 (2022): 126-134. (in Russian)
Namiot, Dmitry. "Introduction to Data Poison Attacks on Machine Learning Models." International Journal of Open Information Technologies 11.3 (2023): 58-68. (in Russian)
Kostyumov, Vasily. "A survey and systematization of evasion attacks in computer vision." International Journal of Open Information Technologies 10.10 (2022): 11-20.(in Russian)
Mozes, Maximilian, et al. "Use of LLMs for Illicit Purposes: Threats, Prevention Measures, and Vulnerabilities." arXiv preprint arXiv:2308.12833 (2023).
Democratic inputs to AI https://openai.com/blog/democratic-inputs-to-ai Retrieved: 08.09.2023
Securing AI The Next Platform Opportunity in Cybersecurity https://greylock.com/greymatter/securing-ai/ Retrieved: 08.09.2023
Namiot, Dmitry, et al. "Information robots in enterprise management systems." International Journal of Open Information Technologies 5.4 (2017): 12-21. (in Russian)
Compromised PyTorch-nightly dependency chain between December 25th and December 30th, 2022 https://pytorch.org/blog/compromised-nightly-dependency/ Retrieved: 08.09.2023
OpenAI Reveals Redis Bug Behind ChatGPT User Data Exposure https://thehackernews.com/2023/03/openai-reveals-redis-bug-behind-chatgpt.html Incident Retrieved: 08.09.2023
Bidzhiev, Temirlan, and Dmitry Namiot. "Research of existing approaches to embedding malicious software in artificial neural networks." International Journal of Open Information Technologies 10.9 (2022): 21-31. (in Russian)
Gao, Yansong, et al. "Backdoor attacks and countermeasures on deep learning: A comprehensive review." arXiv preprint arXiv:2007.10760 (2020).
Kalin, Josh, David Noever, and Matthew Ciolino. "Color Teams for Machine Learning Development." arXiv preprint arXiv:2110.10601 (2021).
MLSecOps https://mlsecops.com/ Retrieved: 08.09.2023
Namiot, Dmitry, and Eugene Ilyushin. "Data shift monitoring in machine learning models." International Journal of Open Information Technologies 10.12 (2022): 84-93. (in Russian)
Namiot, Dmitry, Eugene Ilyushin, and Oleg Pilipenko. "On Trusted AI Platforms." International Journal of Open Information Technologies 10.7 (2022): 119-127. (in Russian)
Liu, Yi, et al. "Prompt Injection attack against LLM-integrated Applications." arXiv preprint arXiv:2306.05499 (2023).
Wong, Sheng, et al. "MLGuard: Defend Your Machine Learning Model!." arXiv preprint arXiv:2309.01379 (2023).
Song, Junzhe, and Dmitry Namiot. "A Survey of the Implementations of Model Inversion Attacks." International Conference on Distributed Computer and Communication Networks. Cham: Springer Nature Switzerland, 2022.
Zou, Andy, et al. "Universal and transferable adversarial attacks on aligned language models." arXiv preprint arXiv:2307.15043 (2023).
Compromising LLMs using Indirect Prompt Injection https://github.com/greshake/llm-security Retrieved: 08.09.2023
Introducing Google’s Secure AI Framework https://blog.google/technology/safety-security/introducing-googles-secure-ai-framework/ Retrieved: 08.09.2023
Secure AI Framework Approach. A quick guide to implementing the Secure AI Framework (SAIF) https://services.google.com/fh/files/blogs/google_secure_ai_framework_approach.pdf Retrieved: 11.09.2023
Securing AI Pipeline https://www.mandiant.com/resources/blog/securing-ai-pipeline Retrieved: 11.09.2023
Atlas MITRE https://atlas.mitre.org/ Retrieved: 11.09.2023
ATLAS mitigations https://atlas.mitre.org/mitigations/ Retrieved: 11.09.2023
Introduction to red teaming large language models (LLMs) https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/red-teaming Retrieved: 11.09.2023
OpenAI’s red team: the experts hired to ‘break’ ChatGPT https://www.ft.com/content/0876687a-f8b7-4b39-b513-5fee942831e8 Retrieved: 11.09.2023
Microsoft AI Red Team building future of safer AI https://www.microsoft.com/en-us/security/blog/2023/08/07/microsoft-ai-red-team-building-future-of-safer-ai/ Retrieved: 13.09.2023
Bug-bar https://learn.microsoft.com/ru-ru/security/engineering/bug-bar-aiml Retrieved: 13.09.2023
AI-Security-Risk-Assessment https://github.com/Azure/AI-Security-Risk-Assessment/blob/main/AI_Risk_Assessment_v4.1.4.pdf Retrieved: 13.09.2023
AI threat modeling https://learn.microsoft.com/ru-ru/security/engineering/threat-modeling-aiml Retrieved: 13.09.2023
Responsible https://www.microsoft.com/en-us/ai/responsible-ai AI Retrieved: 13.09.2023
Failure modes taxonomy https://learn.microsoft.com/ru-ru/security/engineering/failure-modes-in-machine-learning Retrieved: 13.09.2023
NVIDIA AI Red Team: An Introduction https://developer.nvidia.com/blog/nvidia-ai-red-team-an-introduction/ Retrieved: 13.09.2023
Microsoft Counterfit https://github.com/Azure/counterfit/ Retrieved: 13.09.2023
GARD project https://www.gardproject.org/ Retrieved: 13.09.2023
Master program Cybersecurity https://cyber.cs.msu.ru/ Retrieved: 13.09.2023
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162