Movement control algorithm for a mobile robotic platform with a variable level of autonomy

O.G. Loktionova, E.V. Saveleva, E.N. Politov


The creation and implementation of robotic transport devices in production is an urgent task for the development of various industries. Due to the initial complexity of the production conditions, as well as various operational upgrades of individual sections, it is often not possible to completely exclude human participation in the performance of a technological operation. Robotic systems with a given level of autonomy help to reduce the labor intensity of work for a person. The object of the study is a mobile three-wheeled robotic platform (MRP) for local delivery of goods, which has high maneuverability. The purpose of this work is to develop an automatic control system for a mobile robotic wheeled platform with a variable level of autonomy, as well as to evaluate the effectiveness of the transition of the control initiative between a person and a robot when performing various subtasks. The study uses methods of structural analysis and synthesis of automatic control systems for technical objects. The block diagram of the automatic control system (ACS), the scheme and nature of the organization of feedback in the process of human-machine interaction are considered. The criterion for the effectiveness of MCI control based on minimizing the operator's response time to a disturbing signal coming from the HMI is considered. The use of control with a variable level of autonomy will speed up the robotization of industry, reduce the labor intensity of work in production, reduce the class of labor hazard for humans, as well as minimize the risks of emergency and emergency situations when performing specified technological operations.

Full Text:

PDF (Russian)


Gawel A et al. A fully-integrated sensing and control system for high-accuracy mobile robotic building construction //2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). – IEEE, 2019. – p. 2300-2307 DOI: 10.1109/IROS40897.2019.8967733

Semykina I. Yu., Grigoriev A. V., Gargaev A. N. Podkhody k sozdaniyu robotizirovannogo prokhodcheskogo kombayna v usloviyakh bezlyudnoy shakhty [Approaches to the creation of a robotic tunneling machine in a deserted mine]. Innovatsii i perspektivy razvitiya gornogo mashinostroyeniya i elektromekhaniki: [Innovations and prospects for the development of mining engineering and electromechanics]: IPDME-2017. - 2017. - S. 202-205.

Esan O., Du S., Lodewyk B. Review on Autonomous Indoor Wheel Mobile Robot Navigation Systems // 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD). IEEE, 2020. P. 1. DOI: 10.1109/icABCD49160.2020.9183838

Jacko, J. A. (ed.). Human computer interaction handbook: Fundamentals, evolving technologies, and emerging applications. – 2012. DOI: 10.1201/b11963

Bengler K. et al. From HMI to HMIs: Towards an HMI framework for automated driving. information. - 2020. - T. 11. - No. 2.- p. 61. DOI: 10.3390/info11020061

Petrov V.F., Simonov S.B., Terentiev A.I. Setevaya struktura obrabotki informatsii v raspredelennykh sistemakh upravleniya nazemnymi robototekhnicheskimi kompleksami [Network structure of information processing in distributed control systems for ground-based robotic complexes]. Izvestiya vuzov. [University bulletin. Electronics]. - 2018. - T. 23, No. 4. - S. 389-398. – DOI: 10.24151/1561-5405-2018-23-4-389398.

Yatsun S.F., Bartenev V.V., Politov E.V. N., Afonin D.V. (2018). Modelirovaniye dvizheniya robota-tyagacha dlya perevozki samoletov po aerodromu [Simulation of the movement of a tractor robot for transporting aircraft around the airfield]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta [Bulletin of the Southwestern State University], 22(2), 34-43. Doi: 10.21869/2223-1560-2018-22-2-34-43

Politov E., Afonin D., Bartenev V. Mathematical Modeling of Motion of a Two-Section Wheeled Robot // Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings” ER (ZR) 2019, Kursk, Russia, 17 -20 April 2019. - Springer Singapore, 2020. - P. 397-409. DOI: 10.1007/978-981-13-9267-2_32

Politov E. N., Rukavitsyn A. N. Study of controlled motion bionic mini robot // IOP Conference Series: Earth and Environmental Science. - IOP Publishing, 2017. - T. 87. - no. 8. – P. 082040. DOI: 10.1088/1755-1315/87/8/082040

Afonin D. A., Pechurin A. S., Yatsun S. F. Modelirovaniye avtonomnogo krivolineynogo dvizheniya robotizirovannoy buksirovochnoy sistemy vozdushnykh sudov [Modeling of autonomous curvilinear motion of a robotic towing system of aircraft] // Problemy mashinostroyeniya i nadezhnosti mashin [Problems of mechanical engineering and reliability of machines], 2022, no. 2, p. 91-102 DOI: 10.31857/S0235711922020031

Martynenko U.G. Upravleniye dvizheniyem mobil'nykh kolesnykh robotov [Movement control of mobile wheeled robots] // Fundamental'naya i prikladnaya matematika [Fundamental and applied mathematics]. 2005. No. 8. P. 29. Doi: 10.1007/s10958-007-0496-4

Morin P., Samson C. Motion control of wheeled mobile robots // Springer handbook of robotics. - 2008. - T. 1. - p. 799-826.doi: 10.1007/978-3-540-30301-5_35

Spassky B. A. Teleupravleniye v ekstremal'noy robototekhnike [Remote control in extreme robotics]. Robototekhnika i tekhnicheskaya kibernetika [Robotics and technical cybernetics]. - 2020. - T. 8. - No. 2. - S. 101-111.

Spassky B. A. Sovmestnoye upravleniye robotami, avtonomnoye i ot cheloveka-operatora [Joint control of robots, autonomous and from a human operator] // Robototekhnika i tekhnicheskaya kibernetika [Robotics and technical cybernetics]. – 2017. – no. 1. - S. 69-76.

Spassky B. A. Obzor sovremennykh interfeysnykh sistem operatorov mobil'nykh nazemnykh robotov [Review of modern interface systems for operators of mobile ground robots] // Robototekhnika i tekhnicheskaya kibernetika [Robotics and technical cybernetics]. – 2016. – no. 4. - S. 21-31.

Lopota A. V., Spassky B. A. Mobil'nyye nazemnyye robototekhnicheskiye kompleksy professional'nogo naznacheniya [Mobile ground-based robotic complexes for professional purposes] // Robototekhnika i tekhnicheskaya kibernetika [Robotics and technical cybernetics]. - 2020. - T. 8. - No. 1. - S. 5-17.

Beer J. M., Fisk A. D., Rogers W. A. Toward a framework for levels of robot autonomy in human-robot interaction // Journal of human-robot interaction. - 2014. - T. 3. - No. 2.- p. 74. Doi: 10.5898/JHRI.3.2.Beer

Czarnowski J. et al. Technology gaps in human-machine interfaces for autonomous construction robots. Automation in Construction. - 2018. - T. 94. - p. 179-190. DOI: 10.1016/j.autcon.2018.06.014

Petrov V. F. et al. Opyt postroyeniya cheloveko-mashinnogo interfeysa operatora distantsionnogo i supervizornogo upravleniya dvizheniyem RTS [Experience in building a human-machine interface for an operator of remote and supervisory control of RTS motion] // Izvestiya Yuzhnogo federal'nogo universiteta. Tekhnicheskiye nauki. [Bulletin of the Southern Federal University]. Technical science. – 2019. – no. 1 (203). – S. 199-209.

Sergeev S. F. Problema interfeysa v cheloveko-mashinnom vzaimodeystvii [The problem of the interface in human-machine interaction] // Aktual'nyye problemy psikhologii truda, inzhenernoy psikhologii i ergonomiki [Actual problems of labor psychology, engineering psychology and ergonomics. Issue]. - 2014. - T. 6. - S. 83-105.

Wang S., Ramos J. Dynamic locomotion teleoperation of a reduced model of a wheeled humanoid robot using a whole-body human-machine interface. IEEE Robotics and Automation Letters. - 2021. - Vol. 7. - No. 2.-p. 1872-1879. DOI: 10.1109/LRA.2021.3138521

Watanabe K. et al. Feedback control of an omnidirectional autonomous platform for mobile service robots. Journal of Intelligent and Robotic Systems. - 1998. - T. 22. - No. 3.-p. 315-330. DOI: 10.1023/a:1008048307352


  • There are currently no refbacks.

Abava  Кибербезопасность MoNeTec 2024

ISSN: 2307-8162