Classification of soil types based on suitable plants using Multiclass Classification Artificial Neural Network
Abstract
Full Text:
PDFReferences
B. Keulemans, W., Bylemans, D., De Coninck, Farming without plant protection products: Can we grow without using herbicides, fungicides and insecticides?, no. March. 2019.
B. S. Adeleke and O. O. Babalola, “Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits,” Food Sci. Nutr., vol. 8, no. 9, pp. 4666–4684, 2020, doi: 10.1002/fsn3.1783.
D. Serebrennikov, F. Thorne, Z. Kallas, and S. N. McCarthy, “Factors influencing adoption of sustainable farming practices in europe: A systemic review of empirical literature,” Sustain., vol. 12, no. 22, pp. 1–23, 2020, doi: 10.3390/su12229719.
H. Mehbub et al., “Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application,” Plants, vol. 11, no. 23, 2022, doi: 10.3390/plants11233208.
H. Upadhyay et al., “Exploration of Crucial Factors Involved in Plants Development Using the Fuzzy AHP Method,” Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/4279694.
M. F. Seleiman et al., “Drought stress impacts on plants and different approaches to alleviate its adverse effects,” Plants, vol. 10, no. 2, pp. 1–25, 2021, doi: 10.3390/plants10020259.
A. Tataridas, P. Kanatas, A. Chatzigeorgiou, S. Zannopoulos, and I. Travlos, “Sustainable Crop and Weed Management in the Era of the EU Green Deal: A Survival Guide,” Agronomy, vol. 12, no. 3, pp. 1–23, 2022, doi: 10.3390/agronomy12030589.
A. Javed, E. Ali, K. Binte Afzal, A. Osman, and D. S. Riaz, “Soil Fertility: Factors Affecting Soil Fertility, and Biodiversity Responsible for Soil Fertility,” Int. J. Plant, Anim. Environ. Sci., vol. 12, no. 01, pp. 21–33, 2022, doi: 10.26502/ijpaes.202129.
N. M. Alzamel, E. M. M. Taha, A. A. A. Bakr, and N. Loutfy, “Effect of Organic and Inorganic Fertilizers on Soil Properties, Growth Yield, and Physiochemical Properties of Sunflower Seeds and Oils,” Sustain., vol. 14, no. 19, 2022, doi: 10.3390/su141912928.
B. P. Akinde, A. O. Olakayode, D. J. Oyedele, and F. O. Tijani, “Selected physical and chemical properties of soil under different agricultural land-use types in Ile-Ife, Nigeria,” Heliyon, vol. 6, no. 9, p. e05090, 2020, doi: 10.1016/j.heliyon.2020.e05090.
R. E. Enescu, L. Dincă, M. Zup, Șerban Davidescu, and D. Vasile, “Assessment of Soil Physical and Chemical Properties among Urban and Peri-Urban Forests: A Case Study from Metropolitan Area of Brasov,” Forests, vol. 13, no. 7, 2022, doi: 10.3390/f13071070.
W. Food, Soils for nutrition: state of the art. 2022. doi: 10.4060/cc0900en.
M. S. O’Donnell and D. J. Manier, “Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems,” Land, vol. 11, no. 10, 2022, doi: 10.3390/land11101856.
T. Blesslin Sheeba et al., “Machine Learning Algorithm for Soil Analysis and Classification of Micronutrients in IoT-Enabled Automated Farms,” J. Nanomater., vol. 2022, 2022, doi: 10.1155/2022/5343965.
R. Thakur, “Recent Trends Of Machine Learning In Soil Classification : A Review,” Int. J. Comput. Eng. Res., vol. 08, no. 9, pp. 25–32, 2018.
M. Uddin and M. R. Hassan, “A novel feature based algorithm for soil type classification,” Complex Intell. Syst., vol. 8, no. 4, pp. 3377–3393, 2022, doi: 10.1007/s40747-022-00682-0.
J. Guo, K. Wang, and S. Jin, “Mapping of Soil pH Based on SVM-RFE Feature Selection Algorithm,” Agronomy, vol. 12, no. 11, p. 2742, 2022, doi: 10.3390/agronomy12112742.
N. Carvalho, L. C. Barbosa, H. Bellinaso, C. Danilo, and D. Mello, “Soil Erosion Satellite-Based Estimation in Cropland for Soil Conservation,” pp. 1–24, 2023.
A. Ingle, “Crop Recommendation Dataset.” https://www.kaggle.com/datasets/atharvaingle/crop-recommendation-dataset
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162