COVID-19 pandemic: Comparative analysis of epidemic processes in 8 regions of Russian Federation
Abstract
Full Text:
PDF (Russian)References
А Estee, Y Cramer, Evan L Ray, Velma K Lopez, Johannes Bracher, Andrea Brennen, Alvaro J Castro, and etc. Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US. medRxiv 2021.02.03.21250974. doi: https://doi.org/10.1101/2021.02.03.21250974.
Bernoulli, D. (1760). Reflexions sur les avantages de l’inoculation. Mercure de Paris. p. 173.
Bernoulli, D. (1766). Essai d’une nouvelle analyse de la mortalite causee par la petite verole. Mem. Math. Phys. Acad. Roy. Sci. Paris.
Farr W. Progress of epidemics. 2-d Report of regist. General of England and Wales 1840, London.
Boyev, B.V., Predictive-analytical models of epidemics (evaluation of consequences of anthropogenic accidents and natural disasters); Lecture, 2005. - URL: https://www.armscontrol.ru/course/lectures05a/bvb050324.pdf.
Hamer, W. H. (1906). Epidemic disease in England - the evidence of variability and of persistence. The Lancet, 167, pp. 733-738.
Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 115, pp. 700-721.
Kermack, W. O., & McKendrick, A. G. (1932). Contributions to the mathematical theory of epidemics, part. II. Proceedings of the Royal Society of London, 138, pp. 55-83.
Kermack, W. O., & McKendrick, A. G. (1933). Contributions to the mathematical theory of epidemics, part. III. Proceedings of the Royal Society of London, 141, pp. 94-112.
Coburn B. J., Wagner B. G., Blower S. Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1) // BMC Medicine. – 2009. – Vol. 7, №30.
Eichner M., Schwehm M., Duerr H. P., Brockmann S. O. The influenza pandemic preparedness planning tool InfluSim // BMC Infectious Diseases. – 2007. Vol/ 7, № 17.
Kondratiev, M.A., Forecasting techniques and disease propagation models. J. Computer Research and Simulation, V.5, No.5, 2013, P. 863-882.
Das T. K., Savachkin A. A., Zhu Y. A large-scale simulation model of pandemic influenza outbreaks for development of dynamic mitigation strategies // IIE Transactions. – 2008. – Vol. 40, № 9. – pp. 893-905.
Ohkusa Y. Sugawara T. Simulation model of pandemic influenza in the whole of Japan // Japanese Journal of Infectious Dis-eases. – 2009. – Vol. 62, № 2. – pp. 98-106.
Myers M. F., Rogers D. J., Cox J., Flahault A., Hay S. I. Forecasting Disease Risk for Increased Epidemic Preparedness in Public Health // Advances in Parasitology. – 2000. Vol. 47. – pp. 309-330.
Gal’chenko, V.Y., Popov, K.R., Prizemina, I.N., Kachur, N.V., Time series prediction in the evaluation of the respiratory and flu epidemic situation by Lugansk Region data. J. Ukraine Medical Almanac, 2010, V. 13, No. 2, P. 20-22.
Chen C. F., Ho W. H., Chou H. Y., Yang S. M., Chen I. T., Shi H. Y. Long-Term Prediction of Emergency Department Revenue and Visitor Volume Using Autoregressive Integrated Moving Average Model // Computational and Mathematical Methods in Medicine. – 2011. Vol. 2011.
Sumi A., Kato K. MEM spectral analysis for predicting influenza epidemics in Japan // Environmental Health and Preventive Medicine. – 2012. Vol. 17, № 2. – pp. 98-108.
Taranik, A.V., Lebedev, S.N., Litvinenko, I.A., Baydin, G.V., Pavlenko, O.V., Belova, M.G., Besova, E.V., A model to predict epidemic progression in the areas of viral infection transmission through daily social contacts. XV International Conference “Zababakhin Scientific Talks” 27.09.2021–01.10.2021, Book of Abstracts, Snezhinsk, RFNC-VNIITF, 2021.
Moscow Health Care Department. COVID-19 spread among close contacts of patients. 14 July 2020. - URL: https://mosgorzdrav.ru/uploads/imperavi/ru-RU/Заболеваемость_НКВ_у_контактных.pdf.
Gabaix, X. Zipf’s Law for Cities: An Explanation. The Quarterly Journal of Economics, 1999, 114(3), 739–767. [Электронный ресурс]. - URL: http://www.jstor.org/stable/2586883.
Integrated Transport System 2018. Scientific Guide by P.A. Chistyakov, M.S. Fadeyev, M.E. Dmitriev et al. Moscow, 2018, 278 pages.
Official website of COVID-19 information. - URL: https://стопкоронавирус.рф
Databank of on-line vital statistics over Russian Federation regions. - URL: https://rosstat.gov.ru/storage/mediabank/edn_01-2022(1).htm
Adult flu: Methodical recommendations on diagnosis, treatment, specific and nonspecific prophylaxis. Edited by Professor A.G. Chuchalin, Member of the Academy of Medical Sciences, and Professor T.V. Sologub, Chief Non-staff Infectiologist – Saint-Petersburg, NP-Print Publishers, 2014, – 192 pages.
You Li, Harry Campbell, Durga Kulkarni, Alice Harpur, Madhurima Nundy, Xin Wang, Harish Nair. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across 131 countries. Lancet Infect Dis 2020. Published Online October 22, 2020.
Nicole L. Washington, Karthik Gangavarapu, Mark Zeller, Alexandre Bolze, Elizabeth T. Cirulli, Kelly M. Schiabor Barrett and etc. Genomic epidemiology identifies emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. medRxiv 2021.02.06.21251159. doi: https://doi.org/10.1101/2021.02.06.21251159.
Public Health England. SARS-CoV-2 variants of concern and variants under investigation in England. Technical briefing 16. 18 June 2021. [Электронный ресурс]. - URL: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1001359/Variants_of_Concern_VOC_Technical_Briefing_16.pdf.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность MoNeTec 2024
ISSN: 2307-8162