On the use of computers to assess the educational concepts complexity

Robert Maier

Abstract


The article discusses the problem of automating the procedure for assessing the semantic complexity of "ordinary" words and scientific concepts, which is necessary to determine the educational text complexity. The complexity of the concept P relative to thesaurus Z is understood as the value numerically equal to the smallest number of "simple" words from thesaurus Z required to explain the essence of the concept P. At the same time, all scientific concepts can be divided into 7 categories, which correspond to the following complexity values: 1 – 2 – 4 – 8 – 16 – 32 – 64. To assess the concept complexity, the method of paired comparisons, the method of comparing concepts with the  complexity scale and the method of "calculating" complexity are used. Three computer programs in the Pascal language are considered: 1) the program that randomly presents pairs of compared concepts (objects), perceives the expert's answers and writes the results to a file; 2) the program that processes the resulting file and calculates the concept complexity; 3) the program that displays the evaluated objects (scientific concepts) and a complexity scale containing reference concepts, perceives expert assessments and calculates the resulting assessment. The proposed programs can be used to evaluate other qualities of scientific concepts (objects).

Full Text:

PDF (Russian)

References


Majer R.V. Didakticheskaja slozhnost' uchebnyh tekstov i ee ocenka: monografija. – Glazov: GGPI, 2020. 149 s. ISBN 978-5-93008-305-7

Mayer R.V. Results of estimating the didactic complexity of section of the general physics course // Proceedings of ICERI2021 Conference 8th-9th November 2021. pp. 179-187.

Aljabysheva Ju.A., Antonov A.Ju., Verjaev A.A. Cifrovizacija tezaurusnogo podhoda v obrazovanii // Informatika i obrazovanie. 2020. # 1. S. 51–58.

Guchuk V.V. Tehnologija ob"ektivizacii jekspertnoj klasterizacii slaboformalizuemyh ob"ektov // Upravlenie, obrabotka informacii i prinjatie reshenij. 2014. T. 18, # 5 (66). S. 153–158.

Lukashevich N. V. Tezaurusy v zadachah informacionnogo poiska. – M., 2010. 396 s.

Lukov Val. A., Lukov Vl. A. Metodologija tezaurusnogo podhoda: strategija ponimanija // Znanie. Ponimanie. Umenie. 2014. # 1. S. 18–35.

Lukov Val.A., Lukov Vl.A. Tezaurusy: Sub"ektnaja organizacija gumanitarnogo znanija: nauch. monografija. – M.: Izd-vo Nac. in-ta biznesa, 2008. 784 s.

Tulohonova I.S. Modelirovanie sistemy obuchenija na osnove tezaurusnogo podhoda // Internet-zhurnal «Naukovedenie». Tom 9, #4. 2017.

Djevid G. Metod parnyh sravnenij. – M.: Statistika, 1978. 144 s.

Djuk V. A. Komp'juternaja psihodiagnostika. – SPb.: Bratstvo, 1994. 364 s.

Kornoushenko E.K. Algoritm klassifikacii putem parnogo sravnenija priznakov // Avtomatika i telemehanika, # 11, 2017. S. 151-166.

Orlov A.I. Organizacionno-jekonomicheskoe modelirovanie: uchebnik: v 3 ch. Ch. 2: Jekspertnye ocenki. – M.: Izd-vo MGTU im. N.Je. Baumana. 2011. 486 s.

Sadovnikov, I.V. Kvalimetrija: ucheb. posobie. – Chita: ChitGU, 2009. 150 s.

Cherepanov V.S. Jekspertnye ocenki v pedagogicheskih issledovanijah. – M.: Pedagogika, 1989. 150 s.

Davis B., Sumara D. Complexity and Education: Inquiries Into Learning, Teaching, and Research. – Mahwah, New Jersey, London, 2006. 201 p.

Popov V.B. Turbo Pascal dlja shkol'nikov: uchebno-metodicheskoe posobie. – Moskva: RIOR: INFRA-M, 2012. 372 s.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность MoNeTec 2024

ISSN: 2307-8162