A cost model for analytical query optimization
Abstract
Full Text:
PDF (Russian)References
Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB Endow. 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594
Andrea Lottarini, Alex Ramirez, Joel Coburn, Martha A. Kim, Parthasarathy Ranganathan, Daniel Stodolsky, and Mark Wachsler. 2018. Vbench: Benchmarking Video Transcoding in the Cloud. Association for Computing Machinery, New York, NY, USA, 797–809. https://doi.org/10.1145/3173162.3173207
Chihping Wang and Ming-Syan Chen. 1996. On the complexity of distributed query optimization. IEEE Transactions on Knowledge and Data Engineering8, 4(1996), 650–662. https://doi.org/10.1109/69.536256
Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and Peter Boncz. 2018. Everything You Always Wanted to Know about Compiled and Vectorized Queries but Were Afraid to Ask. Proc. VLDB Endow. 11, 13 (Sept. 2018), 2209–2222. https://doi.org/10.14778/3275366.3284966
Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter Saake. 2014. GPU-Accelerated Database Systems: Survey and Open Challenges. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–35. https://link.springer.com/chapter/10.1007/978-3-662-45761-0_1
Periklis Chrysogelos, Panagiotis Sioulas, and A. Ailamaki. 2019. Hardware-conscious Query Processing in GPU-accelerated Analytical Engines. In CIDR. http://cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf
Kuznetsov S.D. In anticipation of native DBMS architectures based on non-volatile main memory. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(1):153-180. (In Russ.) https://doi.org/10.15514/ISPRAS-2020-32(1)-9
Yannis E. Ioannidis. 1996. Query Optimization. ACM Comput. Surv. 28, 1 (March 1996), 121–123. https://doi.org/10.1145/234313.234367
Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 2020. Database System Concepts, Seventh Edition. McGraw-Hill Book Company. https://www.db-book.com/db7/index.html
Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned Query Optimizer. Proc. VLDB Endow. 12, 11 (July 2019), 1705–1718. https://dl.acm.org/doi/10.14778/3342263.3342644
Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practical. In Proceedings of the 2021 International Conference on Management of Data (Virtual Event, China) (SIGMOD/PODS ’21). Association for Computing Machinery, New York, NY, USA, 1275–1288. https://dl.acm.org/doi/10.1145/3448016.3452838
Krste Asanovi ́c, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick. 2006. The Landscape of Parallel Computing Research: A View from Berkeley. Technical Report UCB/EECS-2006-183. EECS Department, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
Duane G. Merrill and Andrew S. Grimshaw. 2010. Revisiting Sorting for GPGPU Stream Architectures. In Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques (Vienna, Austria) (PACT’10). Association for Computing Machinery, New York, NY, USA, 545–546. https://doi.org/10.1145/1854273.1854344
Jeronimo Castrillon, Matthias Lieber, Sascha Kl ̈uppelholz, Marcus V ̈olp, Nils Asmussen, Uwe Aßmann, Franz Baader, Christel Baier, Gerhard Fettweis, Jochen Fr ̈ohlich, Andr ́es Goens, Sebastian Haas, Dirk Habich, Hermann H ̈artig, Mattis Hasler, Immo Huismann, Tomas Karnagel, Sven Karol, Akash Kumar, Wolfgang Lehner, Linda Leuschner, Siqi Ling, Steffen M ̈arcker, Christian Menard, Johannes Mey, Wolfgang Nagel, Benedikt N ̈othen, Rafael Pe ̃naloza, Michael Raitza, J ̈org Stiller, Annett Ungeth ̈um, Axel Voigt, and Sascha Wunderlich. 2018. A Hardware/Software Stack for Heterogeneous Systems. IEEE Transactions on Multi-Scale Computing Systems 4, 3 (2018), 243–259. https://doi.org/10.1109/TMSCS.2017.2771750
Peter Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-pipelining query execution. In In CIDR. http://cidrdb.org/cidr2005/papers/P19.pdf
John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems. Computing in Science Engineering 12, 3 (2010), 66–73. https://doi.org/10.1109/MCSE.2010.69
Emily Furst, Mark Oskin, and Bill Howe. 2017. Profiling a GPU Database Implementation: A Holistic View of GPU Resource Utilization on TPC-H Queries. In Proceedings of the 13th International Workshop on Data Management on New Hardware (Chicago, Illinois) (DAMON ’17). Association for Computing Machinery, New York, NY, USA, Article 3, 6 pages. https://doi.org/10.1145/3076113.3076119
Daniil Kulikov, Daria Nikolskaia, and Petr Kurapov. 2021. Efficient Hardware-Agnostic DBMS Operator Implementation Using SYCL. In 2021 International Conference Engineering and Telecommunication (En T). 1–5. https://doi.org/10.1109/EnT50460.2021.9681747
Yansong Zhang, Yu Zhang, Jiaheng Lu, Shan Wang, Zhuan Liu, and Ruichen Han. 2020. One size does not fit all: accelerating OLAP workloads with GPUs. Distributed and Parallel Databases 38 (12 2020). https://doi.org/10.1007/s10619-020-07304-z
Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern Hardware. Proc. VLDB Endow. 4, 9 (June 2011), 539–550. https://doi.org/10.14778/2002938.2002940
Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-Core Age. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA, 743–754. https://doi.org/10.1145/2588555.2610507
Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner. 2018. Pipelined Query Processing in Coprocessor Environments. In Proceedings of the 2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA, 1603–1618. https://doi.org/10.1145/3183713.3183734
Michael Voss, Rafael Asenjo, and James Reinders. 2019. Pro TBB: C++ Parallel Programming with Threading Building Blocks (1st ed.). Apress, USA. https://dl.acm.org/doi/book/10.5555/3364289
Ben Ashbaugh, Alexey Bader, James Brodman, Jeff Hammond, Michael Kinsner, John Pennycook, Roland Schulz, and Jason Sewall. 2020. Data Parallel C++: Enhancing SYCL Through Extensions for Productivity and Performance. In Proceedings of the International Workshop on OpenCL (Munich, Germany) (IWOCL’20). Association for Computing Machinery, New York, NY, USA, Article 7, 2 pages. https://doi.org/10.1145/3388333.3388653
TPCH http://www.tpc.org/tpch/
Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng Wu. 2010. Graph Pattern Matching: From Intractable to Polynomial Time. Proc. VLDB Endow. 3, 1–2 (sep 2010), 264–275. https://doi.org/10.14778/1920841.1920878
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162