Technique for Formal Methods of Time Series Forecasting Integration in Data Assimilation
Abstract
Full Text:
PDF (Russian)References
G. E. Box, G. M. Jenkins, G. C. Reinsel, i G. M. Ljung, Time series analysis: forecasting and control. John Wiley & Sons, 2015.
L. Nerger i dr., «SANGOMA: Stochastic Assimilation for the Next Generation Ocean Model Applications EU FP7 SPACE-2011-1 project 283580».
M. Kanamitsu, «Description of the NMC global data assimilation and forecast system», Weather and forecasting, t. 4, vyp. 3, ss. 335–342, 1989.
A. V. Kostrov i A. M. Mardjuk, «Ob odnoj matematicheskoj zadache teorii dvizhenija raket», Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki, t. 34, vyp. 10, ss. 1427–1443, 1994.
L. Kilian i M. P. Taylor, «Why is it so difficult to beat the random walk forecast of exchange rates?», Journal of International Economics, t. 60, vyp. 1, ss. 85–107, 2003.
G. Welch i G. Bishop, «An introduction to the Kalman filter», 1995.
G. P. Zhang, «Time series forecasting using a hybrid ARIMA and neural network model», Neurocomputing, t. 50, ss. 159–175, 2003.
N. Golyandina, V. Nekrutkin, i A. A. Zhigljavsky, Analysis of time series structure: SSA and related techniques. CRC press, 2001.
A. G. Ivahnenko, Dolgosrochnoe prognozirovanie i upravlenie slozhnymi sistemami. Tehnika, 1975.
Y. Timoshenkova, S. Porshnev i N. Safiullin, «On the possibility of correction of the forecasting of the Lorenz attractor dynamic characteristics using experimental data and data assimilation», v Journal of Physics: Conference Series, 2018, t. 1053, s. 012004.
Y. Timoshenkova, S. Porshnev, N. Safiullin i O. Ponomareva, «On the Possibility of the Forecast Correction Lorenz Systeme Use Particle Filter», v 2018 International Conference on Applied Mathematics and Computational Science, ICAMCS. NET 2018, 2018, ss. 27–30.
P. L. Houtekamer i H. L. Mitchell, «Data assimilation using an ensemble Kalman filter technique», Monthly Weather Review, t. 126, vyp. 3, ss. 796–811, 1998.
M. Ghil i P. Malanotte-Rizzoli, «Data assimilation in meteorology and oceanography», Advances in geophysics, t. 33, ss. 141–266, 1991.
B. K. W. Lahoz i R. Menard, Data assimilation. Springer, 2010.
E. N. Lorenz, «Deterministic nonperiodic flow», Journal of atmospheric sciences, t. 20, vyp. 2, ss. 130–141, 1963.
M. Tabor, Haos i integriruemost' v nelinejnoj dinamike. 2001.
M. Roth, G. Hendeby, C. Fritsche, i F. Gustafsson, «The Ensemble Kalman filter: a signal processing perspective», EURASIP Journal on Advances in Signal Processing, t. 2017, vyp. 1, ss. 1–16, 2017.
«Air Passengers». https://kaggle.com/abhishekmamidi/air-passengers (prosmotreno dek. 01, 2021).
M. Bocquet, «Introduction to the principles and methods of data assimilation in geosciences», Notes de cours, École des Ponts ParisTech, 2014.
Glavnye komponenty vremennyh rjadov: metod «Gusenica» / Pod red. D.L.Danilova, A.A.Zhigljavskogo. 1997. Prosmotreno: dek. 20, 2021. [Onlajn]. Dostupno na: https://rusneb.ru/catalog/001980_000024_RU_FESSL_MAIN_1331818796268482813/
A. N. Tyrsin, «Postroenie modelej avtoregressii vremennyh rjadov pri nalichii pomeh», Matematicheskoe modelirovanie, t. 17, vyp. 5, ss. 10–16, 2005.
A. E. Permanasari, I. Hidayah, i I. A. Bustoni, «SARIMA (Seasonal ARIMA) implementation on time series to forecast the number of Malaria incidence», v 2013 International Conference on Information Technology and Electrical Engineering (ICITEE), 2013, ss. 203–207
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162