An approach to the automatic enhancement of the robustness of ML models to external influences on the example of the problem of biometric speaker identification by voice
Abstract
Full Text:
PDF (Russian)References
Z. Bai and X.L. Zhang, “Speaker recognition based on deep learning: An overview.” [Online]. Available: http://arxiv.org/abs/2012.00931
I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples.” [Online]. Available: http://arxiv.
org/abs/1412.6572
X. Cao and N. Z. Gong, “Mitigating evasion attacks to deep neural networks via regionbased classification.” [Online]. Available: http://arxiv.org/abs/1709.05583
A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks.” [Online]. Available: http://arxiv.org/abs/1706.06083
N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks.” [Online]. Available: http://arxiv.org/abs/1608.04644
N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The limitations of deep learning in adversarial settings.” [Online]. Available: http://arxiv.org/abs/1511.07528
I. J. Goodfellow, J. PougetAbadie, M. Mirza, B. Xu, D. WardeFarley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks.” [Online]. Available: http://arxiv.org/abs/1406.2661
D. Terjék, “Adversarial lipschitz regularization.” [Online]. Available: http://arxiv.org/abs/1907.05681
T. Miyato, S.i. Maeda, M. Koyama, K. Nakae, and S. Ishii, “Distributional smoothing with virtual adversarial training.” [Online].
Available: http://arxiv.org/abs/1507.00677
B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX utilities,” vol. 33, no. 12, pp. 32–44. [Online]. Available: https://dl.acm.org/doi/10.1145/96267.96279
A. Abhishek and N. Cris. Fuzzing for security. [Online]. Available: https://blog.chromium.org/2012/04/fuzzingforsecurity.html
K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated whitebox testing of deep learning systems,” pp. 1–18. [Online]. Available: http://arxiv.org/abs/1705.06640
N. Wenzler, “Not all neurons are created equal: Towards a feature level deep neural network test coverage metric.” [Online]. Available: http://www.cs.toronto.edu/~chechik/courses19/csc2125/project/nilsfinal.pdf
Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore, “Testing deep neural networks.” [Online]. Available: http://arxiv.org/abs/1803.04792
V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an ASR corpus based on public domain audio books,” in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on. IEEE, pp. 5206–5210.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition.” [Online]. Available: http://arxiv.org/abs/1512.03385
S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks.” [Online]. Available: http://arxiv.org/abs/1611.05431
K. Simonyan and A. Zisserman, “Very deep convolutional networks for largescale image recognition.” [Online]. Available: http://arxiv.
org/abs/1409.1556
J. Oglesby, “What’s in a number? moving beyond the equal error rate,” vol. 17, no. 1, pp. 193–208. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/016763939500017I
E. Gangan, M. Kudus, and E. Ilyushin, “Survey of multi armed bandit algorithms applied to recommendation systems,” vol. 9, no. 4, pp. 12– 27. [Online]. Available: http://injoit.org/index.php/j1/article/view/1093
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162