Selection of Informative Operations in the Construction of Linear Non-elementary Regression Models

Mikhail Bazilevskiy

Abstract


This article is devoted to one of the main problems of regression analysis – the choice of regression model structural specification. The work is based on the linear non-elementary regressions proposed earlier by the author, which, in addition to explanatory variables, include binary operations of all their possible pairs. In such models, with an increase in the number of explanatory variables, the number of binary operations increases significantly. The aim of this work is to develop selection algorithms in linear non-elementary regressions of the most informative variables and operations. An algorithm for approximate estimation of linear non-elementary regressions using the ordinary least squares is considered. The problem of selection of informative operations is formulated. Two strategies for constructing linear non-elementary regressions are proposed. In the first of them there are no restrictions on the number of occurrences of explanatory variables in the model and on the number of binary operations. In the second, the model contains the largest number of binary operations, and each explanatory variable is included in it only once. Using combinatorics, the computational complexity of each of these strategies was determined. It turned out that the problem of constructing a linear non-elementary model based on the second strategy is solved in practice much faster than a similar problem based on the first strategy. The proposed algorithms were implemented using the Gretl package as a special program. With the help of it, high-quality linear non-elementary regression models of freight rail transportation in the Irkutsk region were built

Full Text:

PDF (Russian)

References


Westfall P.H., Arias A.L. Understanding regression analysis: a conditional distribution approach. Chapman and Hall/CRC, 2020. 514 p.

Pardoe I. Applied regression modeling. Wiley, 2020. 336 p.

Kleyner G.B. Proizvodstvennye funktsii: teoriya, metody, primenenie. Moscow: Finance and Statistics, 1986. 239 p.

Khatskevich G.A., Pronevich A.F., Chaykovskiy M.V. Dvukhfaktornye proizvodstvennye funktsii s zadannoy predel'noy normoy zameshcheniya // Ekonomicheskaya nauka segodnya. 2019. No. 10. P. 169-181.

Bazilevskiy M.P. Postroenie stepenno-pokazatel'nykh regressionnykh modeley i ikh interpretatsiya // Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyy analiz i informatsionnye tekhnologii. 2020. No. 4. P. 19-28.

Bazilevskiy M.P. Mnogofaktornye modeli polnosvyaznoy lineynoy regressii bez ogranicheniy na sootnosheniya dispersiy oshibok

peremennykh // Informatika i ee primeneniya. 2020. Vol. 14. No 2. P. 92-97.

Bazilevskiy M.P., Noskov S.I. Formalizatsiya zadachi postroeniya lineyno-mul'tiplikativnoy regressii v vide zadachi chastichno-bulevogo lineynogo programmirovaniya // Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie. 2017. Vol. 55. No. 3. P. 101-105.

Bazilevskiy M.P., Noskov S.I. Otsenivanie indeksnykh modeley regressii s pomoshch'yu metoda naimen'shikh moduley // Vestnik Rossiyskogo novogo universiteta. Seriya: Slozhnye sistemy: modeli, analiz i upravlenie. 2020. No. 1. P. 17-23.

Ivanova N.K., Lebedeva S.A., Noskov S.I. Identifikatsiya parametrov nekotorykh negladkikh regressiy // Informatsionnye tekhnologii i problemy matematicheskogo modelirovaniya slozhnykh sistem. 2016. No. 17. P. 107-110.

Noskov S.I., Khonyakov A.A. Programmnyy kompleks postroeniya nekotorykh tipov kusochno-lineynykh regressiy // Informatsionnye tekhnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami. 2019. Vol. 4. No. 3. P. 47-55.

Noskov S.I. Tekhnologiya modelirovaniya ob"ektov s nestabil'nym funktsionirovaniem i neopredelennost'yu v dannykh. Irkutsk: RITs GP «Oblinformpechat'», 1996. 321 p.

Bazilevskiy M.P. Otsenivanie lineyno-neelementarnykh regressionnykh modeley s pomoshch'yu metoda naimen'shikh kvadratov // Modelirovanie, optimizatsiya i informatsionnye tekhnologii. 2020. Vol. 4. No. 8. Available at: https://moitvivt.ru/ru/journal/pdf?id=872

Noskov S.I., Vrublevskiy I.P. Analiz regressionnoy modeli gruzooborota zheleznodorozhnogo transporta // Vestnik transporta Povolzh'ya. 2020. Vol. 79. No. 1. P. 86-90.

Noskov S.I., Vrublevskiy I.P. Regressionnaya model' dinamiki ekspluatatsionnykh pokazateley funktsionirovaniya zheleznodorozhnogo transporta // Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie. 2016. Vol. 50. No. 2. P. 192-197.

Bazilevskiy M.P., Vrublevskiy I.P., Noskov S.I., Yakovchuk I.S. Srednesrochnoe prognozirovanie ekspluatatsionnykh pokazateley funktsionirovaniya Krasnoyarskoy zheleznoy dorogi // Fundamental'nye issledovaniya. 2016. No. 10-3. P. 471-476.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность IT Congress 2024

ISSN: 2307-8162