On a subclass of the regular language class (“strongly connected” languages): definitions and corresponding canonical automata
Abstract
Full Text:
PDF (Russian)References
Melnikov B., Melnikova A. Some more on omega-finite automata and omega-regular languages. Part I: The main definitions and properties // International Journal of Open Information Technologies. – 2020. – Vol. 8. No. 8. – P. 1–7.
Büchi J. On a decision method in restricted second order arithmetic // In: Proceedings of International Congress on Logic, Method, and Philosophy of Science. – Stanford, Stanford University Press, 1962. – P. 425–435.
Khoussainov B., Nerode A. Automata Theory and its Applications // Progress in Computer Science and Applied Logic, Vol. 21. – Springer, Berlin, 2001.
Harary F. Теория графов // М.: Мир, 1973. Graph Theory. Addison Wesley (Boston), 1969, 274 p.
Melnikov B. 2ω-finite automata and sets of obstructions of their languages // The Korean Journal of Computational and Applied Mathematics (Journal of Applied Mathematics and Computing). – 1999. – Vol. 6. No. 3. – P. 565–576.
Skornyakov L. (Ed.) General Algebra. Vol. 2 // Moscow: Nauka, 1991. (in Russian)
Melnikov B. The star-height of a finite automaton and some related questions // International Journal of Open Information Technologies. – 2018. – Vol. 6. No. 7. – P. 1–5.
Melnikov B. The equality condition for infinite catenations of two sets of finite words // International Journal of Foundations of Computer Science. – 1993. – Vol. 4. No. 3. – P. 267–272.
Melnikov B., Sciarini-Guryanova N. Possible edges of a finite automaton defining a given regular language // The Korean Journal of Computational and Applied Mathematics (Journal of Applied Mathematics and Computing). – 2002. – Vol. 9. No. 2. – P. 475–485.
Melnikov B., Melnikova A. Some properties of the basis finite automaton // The Korean Journal of Computational and Applied Mathematics (Journal of Applied Mathematics and Computing). – 2002. – Vol. 9. No. 1. – P. 135–150.
Melnikov B., Tsyganov A. The state minimization problem for nondeterministic finite automata: the parallel implementation of the truncated branch and bound method // Proceedings – 5th International Symposium on Parallel Architectures, Algorithms and Programming, PAAP-2012. – 2012. – P. 194–201.
Melnikov B., Dolgov V. Some more algorithms for Conway’s universal automaton // Acta Universitatis Sapientiae, Informatica. – 2014. – Vol. 6. No. 1. – P. 5–20.
Melnikov B. The complete finite automaton // International Journal of Open Information Technologies. – 2017. – Vol. 5. No. 10. – P. 9–17.
Dolgov V., Melnikov B. The construction of a universal finite automaton. I. From the theory to the practical algorithms // Bulletin of the Voronezh state University. Series: Physics. Mathematics. – 2013. – No. 2. – P. 173–181. (in Russian)
Dolgov V., Melnikov B. The construction of a universal finite automaton. II. Examples of the work of the algorithms // Bulletin of the Voronezh state University. Series: Physics. Mathematics. – 2014. – No. 1. – P. 78–85. (in Russian)
Lombardy S., Sakarovitch J. The universal automaton // Logic and Automata, Amsterdam University Press. – 2008. – P. 457–504.
Dedekind R. Über Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler // Gesammelte Werke 2, Braunschweig. – 1897. – S. 103–148. (in German)
Korshunov A. On the number of monotone Boolean functions //Problems of Cybernetics. – 1981. – Vol. 38. – P. 5–108. (in Russian)
Salomaa A. Jewels of formal language theory // Maryland, USA: Computer Science Press, Inc., 1981.
Vinogradov I. (Ed.) Mathematical Encyclopedia. Vol. 2 // Moscow: Sovetskaya Encyclopedia, 1979. (in Russian)
Prohorov Yu. (Ed.) Mathematical Encyclopedic Thesaurus // Moscow:Sovetskaya Encyclopedia, 1988. (in Russian)
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162