Counteraction to the hidden destructive impact in swarms of unmanned aerial vehicles
Abstract
The paper deals with the issue of information security in the unmanned aerial vehicles' swarm. In connection with the active development of this technology and its application in various spheres of human activity, one of the most important creation aspects of such a group is the destructive information impact countering of various kinds. The authors analyze the information interaction of swarm agents, dividing it into internal and external, based on the nature of the transmitted information messages. Describing the information interaction of the swarm, the authors develop a set-theoretic model that allows to determine the existing vulnerabilities. Based on the analysis of the identified vulnerabilities exposed to both destructive information interaction and hidden destructive information interaction, the authors propose an approach to countering destructive information impact on the basis of information security traditional methods – mobile cryptography, authentication methods, the model of police stations, improved for use in the context of decentralized systems. To detect violations of information semantic integrity, the authors propose an innovative method of countering the hidden destructive information interaction based on reputation mechanisms. Due to evaluative characteristics of all agents of the group, in the form of reputation criterion, the method allows to identify intruders who carry out not only intentional but also unintentional hidden destructive impact. In the view of information security, the method reduces the probability of the first and second kind errors. To demonstrate the efficiency of the proposed approaches, an experiment is carried out, showing the effectiveness of the methods used in terms of errors of the I and II kind.
Full Text:
PDF (Russian)References
Lee J., Bagheri B., Kao H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing systems // Manufacturing Letters. 2015. Vol. 3. P. 18 – 23.
Chung T.H. et. al. 50 VS. 50 by 2015: Swarm Vs. Swarm UAV Live-Fly Competition at the Naval Postgraduate School // AUVSI. 2013. P. 1792–1811.
Yakimenko O.A., Chung T.H., Extending Autonomy Capabilities for Unmanned Systems with CRUSER // Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences (ICAS 2012). 2012. P. 47–49.
Yang J.H., Kapolka M., Chung T.H. Autonomy balancing in a manned-unmanned teaming (MUT) swarm attack // Robot Intelligence Technology and Applications 2012. 2013. P. 561–569. doi: 10.1007/978-3-642-37374-9_54
Chung T.H., Burdick J.W., Murray R.M. A decentralized motion coordination strategy for dynamic target tracking // Robotics and Automation. 2006. P. 2416–2422. doi: 10.1109/ROBOT.2006.1642064
Trubnikov G.V. Primenenie bespilotnyh letatel'nyh apparatov v grazhdanskih celjah // UAV.RU. Bespilotnaja aviacija [Jelektronnyj resurs]. 2017. Rezhim dostupa: http://www.uav.ru/articles/civil_uav_th.pdf (data obrashhenija: 12.03.2018)
Koval' E.N., Lebedev I.S. Obshhaja model' informacionnoj bezopasnosti robototehnicheskih sistem // Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki. 2013. # 4 (86). S. 153–154.
Zikratov I.A., Kozlova E.V., Zikratova T.V. Analiz ujazvimostej robototehnicheskih kompleksov s roevym intellektom // Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki. 2013. # 5 (87). S. 149–154.
Viksnin I.I. Model' obespechenija informacionnoj bezopasnosti kiberfizicheskih sistem // Nauka i biznes: puti razvitija. 2018. # 2 (80). S. 15–20.
Komarov I.I. i dr. Issledovanie destruktivnogo vozdejstvija robotov-zloumyshlennikov na jeffektivnost' raboty mul'tiagentnoj sistemy // Processy upravlenija i ustojchivost'. 2014. T. 1, # 1. S. 336–340.
Zikratov I.A. i dr. Postroenie modeli doverija i reputacii k ob"ektam mul'tiagentnyh robototehnicheskih sistem s decentralizovannym upravleniem // Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki. 2014. # 3 (91). S. 30–38.
Jur'eva R.A., Komarov I.I., Dorodnikov N.A. Postroenie modeli narushitelja informacionnoj bezopasnosti dlja mul'tiagentnoj robototehnicheskoj sistemy s decentralizovannym upravleniem // Programmnye sistemy i vychislitel'nye metody. 2016. # 1. S. 42–48.
Kirichenko V.V. Information security of communication channel with UAV // Electronics and control systems. 2015. # 3. P. 23–27.
Rivera E., Baykov R., Gu G. A study on unmanned vehicles and cyber security. Texas, USA, 2014.
Hooper M. et al. Securing commercial wifi-based uavs from common security attacks // Military Communications Conference. 2016. P. 1213–1218. doi: 10.1109/MILCOM.2016.7795496
Watkins L. et al. Exploiting multi-vendor vulnerabilities as back-doors to counter the threat of rogue small unmanned aerial systems // ACM MobiHoc Workshop on Mobile IoT Sensing, Security, and Privacy [Jelektronnyj resurs]. 2018. Rezhim dostupa: https://www.researchgate.net/publication/325063732_Exploiting_Multi-Vendor_Vulnerabilities_as_Back-Doors_to_Counter_the_Threat_of_Rogue_Small_Unmanned_Aerial_Systems (data obrashhenija: 12.03.2018). doi: 10.1145/3139937.3139943
Tutubalin P.I., Kirpichnikov A.P. Obespechenie informacionnoj bezopasnosti funkcionirovanija kompleksov bespilotnoj razvedki // Vestnik Kazanskogo tehnologicheskogo universiteta. 2017. T. 20, # 21. S. 86–92.
Higgins F., Tomlinson A., Martin K.M. Threats to the swarm: Security considerations for swarm robotics // International Journal on Advances in Security. 2009. Vol. 2, # 2-3. P. 288–297.
Sedjelmaci H., Senouci S.M. Cyber security methods for aerial vehicle networks: taxonomy, challenges and solution // The Journal of Supercomputing. 2018. # 10. P. 1–17. doi: 10.1007/s11227-018-2287-8
Sidorov V., Ng W.K., Lam K.Y., Salleh M.F.B.M. Cyber-Threat Analysis of a UAV Traffic Management System for Urban Airspace // Air Transport Research Society World Conference 2017 [Jelektronnyj resurs]. 2017. Rezhim dostupa: http://hdl.handle.net/10220/42957 (data obrashhenija: 12.03.2018).
Javaid A.Y. Cyber security threat analysis and attack simulation for unmanned aerial vehicle network. 2015.
Barbasov V.K. i dr. Mnogorotornye bespilotnye letatel'nye apparaty i vozmozhnosti ih ispol'zovanija dlja distancionnogo zondirovanija Zemli // Inzhenernye izyskanija. 2012. # 10. S. 38–42.
Komali R. S., MacKenzie A. B., Gilles R. P. Effect of selfish node behavior on efficient topology design //IEEE Transactions on mobile computing. 2008. Vol. 7, # 9. P. 1057-1070.
Moldovjan N.A. Vvedenie v kriptosistemy s otkrytym kljuchom. BHV-Peterburg. 2005.
Vigna G. Cryptographic traces for mobile agents //Mobile agents and security. 1998. Lecture Notes in Computer Science book series (LNCS). Vol. 1419. P. 137 – 153.
Jansen W.A. Countermeasures for mobile agent security // Computer communications. 2000. Vol. 23, # 17. P. 1667 – 1676.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162