Singularity as esoteric side of the natural numbers structure

G.G. Ryabov, V.A. Serov

Abstract


The article concerns the structure of natural numbers as a discrete dynamical system based on the billiard graph and the research of the introduced singularity concept and the set of singular circles. It allows to consider the structure of natural numbers from wider positions of geometrical and topological  constructions and to establish a number of interesting properties. The properties of the sets of natural numbers pairs in singular circles are proved and the sets consisting of the Goldbach primes pairs are distinguished from them. The general geometry of the singular circles embeddings into each other is presented. The constructive methods for arbitrarily large singular numbers generation are offered. It was shown that the number of singular natural numbers is infinite and singular vertices play an important role in inducing cluster-type automorphisms in the structure of natural numbers. The interval interdependence of the arrangement of prime twins and composite twins was investigated, which became the basis for the hypothesis of equal power of these sets.


Full Text:

PDF (Russian)

References


Anosov D.V. Gladkie dinamicheskie sistemy // Itogi nauki i tehn. Ser. Sovrem. probl. mat. Fundam. napravlenija. 1985. t. 1, s. 151-240.

Bunimovich L.A., Sinaj Ja.G., Chernov N.I. Statisticheskie svojstva dvumernyh giperbolicheskih billiardov. Uspehi mat. nauk, 1991. t. 46, vyp. 4 (280), s. 43-92.

Matijasevich Ju. V. Chto mozhno i chto nevozmozhno delat' s diofantovymi problemami. Trudy MIAN, 2011. t. 275, s. 128–143.

Rjabov G.G., Serov V.A. Beskonechnye arifmeticheskie progressii i global'nye derev'ja v strukture natural'nyh. ⁄ ⁄ International Journal of Open Information Technologies. 2017. t. 5, # 6, s. 1-5. http://injoit.org/index.php/j1/article/download/441/411

Rjabov G.G. Predstavlenie mnozhestva natural'nyh chisel v vide dinamicheskoj sistemy diskretnogo vremeni. ⁄ ⁄ International Journal of Open Information Technologies. 2017. t. 5, # 8, s. 27-34. http://injoit.org/index.php/j1/article/download/464/441


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность IT Congress 2024

ISSN: 2307-8162