On computational search for quasi-orthogonal systems of Latin squares which are close to orthogonal systems.
Abstract
Full Text:
PDF (Russian)References
Kostrikin A.I. Vvedenie v algebru. M.: «Nauka». 1977. 495 S.
Holl M. Kombinatorika. M.: «Mir». 1970. 425 S.
Colbourn C.J., Dinitz J.H. Handbook of Combinatorial Designs. Second Edition. Chapman&Hall, 2006. 984 p.
Lin, Keh Ying (2004), "Number Of Sudokus", Journal of Recreational Mathematics, 33 (2): 120–124.
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
Mironov I., Zhang L. Applications of SAT solvers to cryptanalysis of hash functions // Lecture Notes in Computer Science. 2006. Vol. 4121, pp. 102–115.
Semenov. A., Zaikin. O., Bespalov. D., Posypkin. M.: Parallel logical cryptanalysis of the generator A5/1 in BNB-grid system // Lecture Notes in Computer Science. 2011. Vol. 6873, pp. 473–483.
Lynce I. Ouaknine J. Sudoku as a sat problem. In 9th International Symposium on Artificial Intelligence and Mathematics, 2006.
Zhang H. Combinatorial Design by SAT Solvers. In [6], Chapter 17. Pp. 533- 568.
Zaikin, O., Kochemazov, S., Semenov, A.: SAT-based search for systems of diagonal latin squares in volunteer computing project sat@home // In Proc. of MIPRO 2016, Opatija, Croatia, May 30 - June 3, 2016. pp. 277–281.
Zaikin, O., Zhuravlev, A., Kochemazov, S., Vatutin, E. On the construction of triples of diagonal Latin squares of order 10 // Electronic Notes in Discrete Mathematics. 2016. Vol. 54. pp. 307–312.
Zaikin, O., Kochemazov, S. The Search for Systems of Diagonal Latin Squares Using the SAT@home Project // International Journal of Open Information Technologies. 2015. Vol. 3. No. 11. pp. 4-9.
Egan J., Wanless I. Enumeration of MOLS of Small Order// Mathematics of Computation. 2016. Vol. 85. N 298. 799-824
Cook S.A. The complexity of theorem-proving procedures // Third annual ACM symposium on Theory of computing, 1971, Ohio, USA. ACM. 1971. P. 151-159.
Gjeri M., Dzhonson D. Vychislitel'nye mashiny i trudnoreshaemye zadachi. M.: «Mir». 1982. 416 S.
Selman B., Kautz H., Cohen B. Noise strategies for local search. In Proc. of AAAI-94, pp. 337-343. AAAI Press/The MIT Press, 1994.
Schoning U. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In 40th FOCS, pages 410–414, New York, NY, October 1999. IEEE.
Hirsch E., Kojevnikov A. UnitWalk: A new SAT solver that uses local search guided by unit clause elimination. Annals Math. and AI, 43(1):91-111, 2005.
Kautz H., Sabharwal A., Selman B. Incomplete Algorithms. In [6], Chapter 6. Pp. 185-203.
Marques-Silva J.P., Sakallah K.A. GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.
Marques-Silva J.P., Lynce I., Malik S. Conflict-Driven Clause Learning SAT solvers. In [6], Chapter 4. Pp. 131–153.
Steffen Hölldobler and Van Hau Nguyen. An Efficient Encoding of the At-Most-One Constraint.//Tech. rep. 2013-04, Technische Universität Dresden, Germany, 2013.
Kochemazov S.E., Semenov A.A. O razlichnyh podhodah k bulevomu kodirovaniju zadach poiska sistem ortogonal'nyh latinskih kvadratov // Trudy XVIII konferencii «Informacionnye i matematicheskie tehnologii v nauke i upravlenii». Irkutsk. 2013. T.3. S. 40–44.
Asin R, Nieuwenhuis R, Oliveras A, Rodriguez-Carbonell E (2011) Cardinality networks: a theoretical and empirical study. Constraints 16:195–221.
Sinz C. Towards an Optimal Encoding of Boolean Cardinality Constraints // Lecture Notes in Computer Science. 2005. Vol. 3709. Pp. 827-831.
Cejtin G.S. O slozhnosti vyvoda v ischislenii vyskazyvanij // Zapiski nauchnyh seminarov LOMI AN SSSR. 1968. T.8. C. 234–259.
Shaowei Cai, Chuan Luo, Kaile Su: Scoring Functions Based on Second Level Score for k-SAT with Long Clauses // J. Artif. Intell. Res. 51, pp. 413-441 (2014)
Shaowei Cai, Kaile Su: Local search for Boolean Satisfiability with configuration checking and subscore // Artif. Intell. 204, pp. 75-98 (2013)
Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Competition 2016. In: Balyo, T., Heule, M., Jarvisalo, M. (eds.) Proc. of SAT Competition 2016. Dep. of Compju Sci. Series of Publications B, vol. B-2016-1, pp. 44–45. University of Helsinki (2016)
Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Cryptographic Problems. In: Kullmann, O. (ed.) SAT. Lecture Notes in Computer Science, vol. 5584, pp. 244–257. Springer (2009)
Posypkin M.A., Zaikin O.S., Bespalov D.V., Semenov A.A. Reshenie zadach kriptoanaliza potochnyh shifrov v raspredelennyh vychislitel'nyh sredah // Trudy Instituta sistemnogo analiza Rossijskoj akademii nauk. 2009. T. 46. S. 119-137.
Posypkin M., Semenov A., Zaikin O. Using BOINC desktop grid to solve large scale SAT problems // Computer Science (AGH). 2012. Vol. 13. pp 25-34.
Zaikin O.S., Posypkin M.A., Semenov A.A., Hrapov N.P. Opyt organizacii dobrovol'nyh vychislenij na primere proektov OPTIMA@home i SAT@home // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2012. # 5-2. S. 340-347.
Zaikin O. S., Semenov A. A., Posypkin M. A. Procedury postroenija dekompozicionnyh mnozhestv dlja raspredelennogo reshenija SAT-zadach v proekte dobrovol'nyh vychislenij SAT@home // Upravlenie bol'shimi sistemami: sbornik trudov. 2013. #. 43. S. 138-156.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162