Team assembly in R&D: A review of imitating modeling approach for science and technology center in Oil&Gaz industry

Fedor Krasnov, Sofia Dokuka, Rostislav Yavorskiy

Abstract


This paperaimstoexploretheanalysisand prediction of the scientific research work. Authors examine the scientific research work as collective complex action. Authors investigated the methodological basis of the team formation for the scientific research. The scientific research was studied as a complex action which consisted of many components. Such approach resulted in the formal model of the scientific activity.

Authors of the paper modelled the agent-based environment of the scientific activity. The model was calibrated based on data from scientific collaborations of science and technology centerGazpromneft. Results of agent-based models proved the possibilities of the methodological approach. The obtained results go in line with the predictive abilities of the imitations models.


Full Text:

PDF (Russian)

References


Axelrod R. M. The complexity of cooperation: Agent-based models of competition and collaboration. – Princeton University Press, 1997.

Bianchi F., Squazzoni F. Agent‐based models in sociology //Wiley Interdisciplinary Reviews: Computational Statistics. – 2015. – T. 7. – #. 4. – S. 284-306.

Borshchev A. The big book of simulation modeling: multimethod modeling with AnyLogic 6. – AnyLogic North America, 2013.

Gary M. S., Wood R. E. Unpacking mental models through laboratory experiments //System Dynamics Review. – 2016. – T. 32. – #. 2. – S. 99-127.

Epstein J. M. Agent‐based computational models and generative social science //Complexity. – 1999. – T. 4. – #. 5. – S. 41-60.

Krasnov F., Dokuka S., Yavorskiy R. The Structure of Organization: The Coauthorship Network Case //International Conference on Analysis of Images, Social Networks and Texts. – Springer, Cham, 2016. – S. 100-107.

F. Krasnov, S. Dokuka, I. Gorshkov, R. Yavorskiy. Analysis of Strong and Weak Ties in Oil & Gas Professional Community. // Proceedings of International Workshop on Formal Concept Analysis for Knowledge Discovery. - 2017. - pp. 22-33.

Hirsch J. E. An index to quantify an individual's scientific research output //Proceedings of the National academy of Sciences of the United States of America. – 2005. – T. 102. – #. 46. – S. 16569.

Gentner D., Stevens A. L. Mental models. – Psychology Press, 2014.

Pislyakov, V. and Shukshina, E. (2014), Measuring excellence in Russia: Highly cited papers, leading institutions, patterns of national and international collaboration. J Assn Inf Sci Tec, 65: 2321–2330. doi:10.1002/asi.23093

Snijders T. A. B., Van de Bunt G. G., Steglich C. E. G. Introduction to stochastic actor-based models for network dynamics //Social networks. – 2010. – T. 32. – #. 1. – S. 44-60.

Taylor, Frederick Winslow, The Principles of Scientific Management, New York, NY, USA and London, UK: Harper & Brothers, 1911

Vinkler P. Eminence of scientists in the light of the h-index and other scientometric indicators //Journal of information science. – 2007. – T. 33. – #. 4. – S. 481-491.

Van Raan A. F. J. Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups //scientometrics. – 2006. – T. 67. – #. 3. – S. 491-502.

Wilensky U. NetLogo. – 1999.

Aleskerov F. T., Badgaeva D. N., Pisljakov V. V., Sterligov I. A., Shvydun S. V. 3nachimost' osnovnyh rossijskih i mezhdunarodnyh jekonomicheskih zhurnalov: setevoj analiz // Zhurnal novoj jekonomicheskoj associacii. 2016. T. 2. # 30. S. 193-207

Dominjak V. I. Organizacionnaja lojal'nost': model' realizacii ozhidanij rabotnika ot svoej organizacii //Diss. na soisk. uch. st. kand. psih. n., SPb, SPbGU. – 2006.

Danilevskaja N.V. Ocenka kak istochnik dinamiki tekstoobrazovanija v nauchnoj kommunikacii // Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2016. # 12-2 (54). S. 27-30.

Kleshheva I.V. Ocenka jeffektivnosti nauchno-issledovatel'skoj dejatel'nosti studentov. – SPb: NIU ITMO, 2014. – 92 s.

Levin V. I. Vozmozhna li pravil'naja ocenka vklada uchenogo v nauku s pomoshh'ju indeksa hirsha? primery //Matematicheskie metody v tehnike i tehnologijah-MMTT. – 2016. – #. 6. – S. 100-102.

Lipchiu N. V. i Lipchiu K. I. Metodologija nauchnogo issledovanija [Kniga]. - Krasnodar : FGBOU VO «Kubanskij gosudarstvennyj agrarnyj universitet imeni I. T. Trubilina», 2013.

Lancev E.A., Dorrer M.G. Agentnoe imitacionnoe modelirovanie biznes-processov v notacii eEPC // Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki. – 2013. – # 3. – S. 86–92.

Mkrtchjan M.A. Fazy perehodnogo perioda ot gruppovogo sposoba obuchenija k kollektivnomu // Kollektivnyj sposob obuchenija. 1995. # 2. S. 8-11.

Sidorenkov A. V. Gruppovaja splochennost' i neformal'nye podgruppy //Psihologicheskij zhurnal. – 2006. – T. 27. – #. 1. – S. 44-53.

Strogalev V. P., Tolkacheva I. O. Reshenie prikladnyh tehnicheskih zadach metodom imitacionnogo modelirovanija //Inzhenernyj zhurnal: nauka i innovacii. – 2013. – #. 3. – S. 8-8.

Pospelov D.A. Ot modelej kollektivnogo povedenija k mnogoagentnym sistemam // Programmnye produkty i sistemy. – 2003. – # 2.

Zhurnal «Neftjanoe Hozjajstvo» // Arhiv redakcii «Neftjanoe hozjajstvo». - 2016. - #12. http://www.oil-industry.net/Journal/archive_detail.php?ID=11007

Rossijskaja neftegazovaja tehnicheskaja konferencija SPE // 16RPTC. – 2016. http://rca.spe.org/en/events/ar/spe-russian-petroleum-technology-conference-and-exhibition-2016/


Refbacks



Abava  Кибербезопасность IT Congress 2024

ISSN: 2307-8162