A review of two algorithms for proxy model of enhanced oil recovery
Abstract
In a number of computational experiments, a meta-algorithm is used to solve the problems of the oil and gas industry. Such experiments begin in the hydrodynamic simulator, where the value of the function is calculated for specific nodal values of the parameters based on the physical laws of fluid flow through porous media. Then, the values of the function are calculated, either on a more detailed set of parameter values, or for parameter values that go beyond the nodal values. Among other purposes, such an approach is used to calculate incremental oil production resulting from the application of various methods of enhanced oil recovery (EOR). The authors found out that in comparison with the traditional computational experiments on a regular grid, computation using machine learning algorithms could prove more productive.
Full Text:
PDF (Russian)References
A.P.Kuleshov, «Kognitivnye tehnologii v adaptivnyh modeljah slozhnyh ob"ektov», INFORMACIONNYE TEHNOLOGII I VYChISLITEL''NYE SISTEMY 1/2008
Guo, Z., Reynolds, A. C., & Zhao, H. (2017, February 20). A Physics-Based Data-Driven Model for History-Matching, Prediction and Characterization of Waterflooding Performance. Society of Petroleum Engineers. doi:10.2118/182660-MS
Shehata, A. M., El-banbi, A. H., & Sayyouh, H. (2012, January 1). Guidelines to Optimize CO2 EOR in Heterogeneous Reservoirs. Society of Petroleum Engineers. doi:10.2118/151871-MS
Weiser, Alan, and Sergio E. Zarantonello. “A note on piecewise linear and multilinear table interpolation in many dimensions.” MATH. COMPUT. 50.181 (1988): 189-196.
Dierckx, Paul. Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993.
Travis E. Oliphant. Python for Scientific Computing, Computing in Science & Engineering, 9, 10-20 (2007), DOI:10.1109/MCSE.2007.58
K. Jarrod Millman and Michael Aivazis. Python for Scientists and Engineers, Computing in Science & Engineering, 13, 9-12 (2011), DOI:10.1109/MCSE.2011.36
Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The NumPy Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37
Wes McKinney. Data Structures for Statistical Computing in Python, Proceedings of the 9th Python in Science Conference, 51-56 (2010)
Blog Aleksandra D'jakonova «Sluchajnyj les (Random Forest)», 2016/11/14, https://alexanderdyakonov.wordpress.com
Breiman, Leo (2001). «Random Forests». Machine Learning 45 (1): 5–32. DOI:10.1023/A:1010933404324.
Gashler, M. and Giraud-Carrier, C. and Martinez, T., Decision Tree Ensemble: Small Heterogeneous Is Better Than Large Homogeneous, The Seventh International Conference on Machine Learning and Applications, 2008, pp. 900-905., DOI 10.1109/ICMLA.2008.154
Opitz, D.; Maclin, R. (1999). "Popular ensemble methods: An empirical study". Journal of Artificial Intelligence Research. 11: 169–198. doi:10.1613/jair.614
Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
Fadili, A., Kristensen, M. R., & Moreno, J. (2009, January 1). Smart Integrated Chemical EOR Simulation. International Petroleum Technology Conference. doi:10.2523/IPTC-13762-MS
Refbacks
Abava Кибербезопасность MoNeTec 2024
ISSN: 2307-8162