Reverse arithmetic operations
Abstract
In this paper we proposed earlier Raspletin B.K. way to learn a direct arithmetic operations through their representation in the form of matrices distributed on inverse matrix arithmetic operations.
This allowed studying the matrix inverse operation, simply and clearly show the generation of a variety of known kinds of numbers, rules of operating with non-integer numbers, as well as gain new numerical objects – pseudo-numbers.
The first three matrices built: two for the left and right inverse operations operations for operation of raising to rank (left convolution of operation of exponentiation), and built the exact same reverse operation predvychetaniya matrix for the very first direct operations predslozheniya (zeration).
Full Text:
PDF (Russian)References
Raspletin B.K. “Prjamye arifmeticheskie operacii”, Doizdanie sbornika izbrannyh trudov V Mezhdunarodnoj nauchno-prakticheskoj konferencii: uchebno-metodicheskoe posobie. Pod red. prof. V.A. Suhomlina. – M.: INTUIT.RU, 2011. c.91-98.
Rubcov K.A.” Algoritmizacija ingredientov vo mnozhestve algebraicheskih operacij” Kibernetika, 1989, # 3, c. 111-112.
Kamenshhikov A.F. “Svjaz' matric prjamyh arifmeticheskih operacij”, Doizdanie sbornika izbrannyh trudov V Mezhdunarodnoj nauchno-prakticheskoj konferencii: uchebno-metodicheskoe posobie. Pod red. prof. V.A. Suhomlina. – M.: INTUIT.RU, 2011. s.99-135.
Kamenshhikov A.F., Kamenshhikov A.A. “Postroenie i sravnenie nekotoryh vysshih pravyh i levyh giperoperacij”, III Mezhdunarodnaja zaochnaja nauchno-prakticheskaja konferencija «Nauchnaja diskussija: voprosy fiziki, matematiki, informatiki», Moskva 2012, c.29-33.
Kamenshhikov A.F., Kamenshhikov A.A. “Obshhie formuly svertki dlja prjamyh arifmeticheskih operacij”, III Mezhdunarodnaja zaochnaja nauchno-prakticheskaja konferencija «Nauchnaja diskussija: voprosy fiziki, matematiki, informatiki», Moskva 2012, c.37-44.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162