Information influence in a social network model based on the diffusion of signals formed by orthogonal functions

B.A. Toropov, A.S. Ovchinsky, V.F. Makarov

Abstract


The article considers the problem of assessing the influence of individual users of social networks and their subsets as initiators of the dissemination of information influence. A model of information diffusion on a set of vertices of a social network graph using orthogonal Walsh functions is proposed, which makes it possible to evaluate the result of information influence on all participants in network interaction both from each individual user and from a coalition of users. It is shown that the author's metric of centrality (centrality of diffusion) is closely correlated with the centrality according to the connections matrix of the network graph, but it is simpler to calculate and does not require computing resources when assessing group influence.

Full Text:

PDF (Russian)

References


Kirichenko. A.V. Napravleniya pravovogo regulirovaniya rasprostraneniya informatsii v sotsialnykh setyakh // Yuridicheskaya nauka: istoriya i sovremennost. – 2022. – V 9. – pp. 113-118.

Zakhartsev. S.I.. Salnikov. V.P. Informatsionnoye prostranstvo kak novaya globalnaya ugroza chelovechestvu i ego pravam: filosofskiy i pravovoy podkhody // Pravovoye pole sovremennoy ekonomiki. – 2015. – V 8. – pp. 11-19.

Zhang. J.. Yu. P.S. Information Diffusion. In: Broad Learning Through Fusions // Springer. Cham. ‒ 2019. URL:https://www.ifmlab.org/files/book/broad_learning/chap9.pdf.

Iamnitchi. A.. Hall. L.O.. Horawalavithana. S.. Mubang. F.. Ng. K.W. and Skvoretz. J. // Modeling information diffusion in social media: data-driven observations. Front. Big Data 6:1135191. ‒ 2023. URL: https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2023.1135191/full.

Sade. D.S.. Sociometrics of macaca mulatta III: N-path centrality in grooming networks // Social Networks ‒ 1989. ‒ V. 11. pp. 273–292. URL: https://www.sci-hub.ru/10.1159/000155480.

Freeman. L.C.. Centrality in networks: I. conceptual clarification // Social Networks. ‒ 1979. ‒ V. 1. pp. 215–239. URL: https://ucilnica.fri.uni-lj.si/pluginfile.php/1147/course/section/1510.

Jackson. M.O.. Wolinsky. A. A. Strategic Model of Social and Economic Networks // Journal of Economic Theory. ‒ 1996. ‒ V. 71. pp. 44 – 74. URL: https://docs.yandex.ru/docs/view?tm =1760955147&tld =ru〈 =en&name=jackson-wolinsky-1996.pdf.

Johnson. Donald B. Efficient algorithms for shortest paths in sparse networks // Journal of the ACM. ‒ 1977. ‒ V. 24 (1). pp. 1–13.

Newman. M.E.J. Mathematics of Networks // In: The New Palgrave Dictionary of Economics. Palgrave Macmillan. London. ‒ 2008. URL: https://ccb-class.pbworks.com/f/newman_network_math.pdf.

Bonacich. P. Eigenvector-like measures of centrality for asymmetric relations // Social Networks.– 2001. URL: https://www.cse.cuhk.edu.hk/~cslui/CMSC5734/bonacich2001.pdf.

Alman. J.. Duan. R.. Vassilevska Williams. V.. Xu. Y.. Xu. Z.. Zhou. R. More Asymmetry Yields Faster Matrix Multiplication. arXiv preprint arXiv:2404.16349. ‒ 2024. URL:https://arxiv.org/pdf/2404.16349v2.

Kashin B.S.. Saakyan A.A. Ortogonalnyye ryady. Izd.2. dop. – M.: Bukinist. – 1999. – 560 p.

S. Kachmazh. G. Shgeyngauz. Teoriya ortogonalnykh ryadov. Izd-vo: «Nauka». M. 1958. 325 p.

Makarov. V. F.. Afonin. V.N. Ortogonalnyye funktsii Uolsha v sistemakh zashchity informatsii / V. F. Makarov. // Informatsionnyye sistemy i tekhnologii. – 2010. – V 2(58). – pp. 119-129

Kharmut. Kh.F. Peredacha informatsii ortogonalnymi funktsiyami. Per. s angl. Dyadyunova N.G. i Senina A.I. M.: «Svyaz». ‒ 1975. ‒ 267 p.

Magomed-Kasumov. M. G. Sistema funktsiy. ortogonalnaya v smysle Soboleva i porozhdennaya sistemoy Uolsha / M. G. Magomed-Kasumov // Matematicheskiy analiz i matematicheskoye modelirovaniye : Tezisy dokladov XIV Vladikavkazskoy molodezhnoy matematicheskoy shkoly v ramkakh IX nauchno-obrazovatelnogo Mezhdunarodnogo foruma. RSO-Alaniya. s. N.Tsey. 16–21 iyulya 2018 goda. – RSO-Alaniya. s. N.Tsey: Yuzhnyy matematicheskiy institut Vladikavkazskogo nauchnogo tsentra Rossiyskoy akademii nauk i Pravitelstva Respubliki Severnaya Osetiya-Alaniya. – 2018. – pp. 35-36.

Tsvetkov. K. Yu. Primeneniye dvumernykh nelineynykh signalov Franka-Uolsha. Franka-Krestensonav metode formirovaniya skrytogo kanala s kodovym uplotneniyem v strukture szhimayemykh videodannykh / K. Yu. Tsvetkov. V. E. Fedoseyev. E. S. Abazina // Naukoyemkiye tekhnologii v kosmicheskikh issledovaniyakh Zemli. – 2013. – 5. V 4. – pp. 32-38.

Kim. H.. Jung. I.. Chung. W.. Choi. S.. Hong D. Orthogonal Code-based Block Transmission for Burst Transmission. arXiv preprint arXiv:1705.00494. ‒ 2017. URL:https://arxiv.org/pdf/1705.00494.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность ИТ конгресс СНЭ

ISSN: 2307-8162