Information influence in a social network model based on the diffusion of signals formed by orthogonal functions
Abstract
Full Text:
PDF (Russian)References
Kirichenko. A.V. Napravleniya pravovogo regulirovaniya rasprostraneniya informatsii v sotsialnykh setyakh // Yuridicheskaya nauka: istoriya i sovremennost. – 2022. – V 9. – pp. 113-118.
Zakhartsev. S.I.. Salnikov. V.P. Informatsionnoye prostranstvo kak novaya globalnaya ugroza chelovechestvu i ego pravam: filosofskiy i pravovoy podkhody // Pravovoye pole sovremennoy ekonomiki. – 2015. – V 8. – pp. 11-19.
Zhang. J.. Yu. P.S. Information Diffusion. In: Broad Learning Through Fusions // Springer. Cham. ‒ 2019. URL:https://www.ifmlab.org/files/book/broad_learning/chap9.pdf.
Iamnitchi. A.. Hall. L.O.. Horawalavithana. S.. Mubang. F.. Ng. K.W. and Skvoretz. J. // Modeling information diffusion in social media: data-driven observations. Front. Big Data 6:1135191. ‒ 2023. URL: https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2023.1135191/full.
Sade. D.S.. Sociometrics of macaca mulatta III: N-path centrality in grooming networks // Social Networks ‒ 1989. ‒ V. 11. pp. 273–292. URL: https://www.sci-hub.ru/10.1159/000155480.
Freeman. L.C.. Centrality in networks: I. conceptual clarification // Social Networks. ‒ 1979. ‒ V. 1. pp. 215–239. URL: https://ucilnica.fri.uni-lj.si/pluginfile.php/1147/course/section/1510.
Jackson. M.O.. Wolinsky. A. A. Strategic Model of Social and Economic Networks // Journal of Economic Theory. ‒ 1996. ‒ V. 71. pp. 44 – 74. URL: https://docs.yandex.ru/docs/view?tm =1760955147&tld =ru〈 =en&name=jackson-wolinsky-1996.pdf.
Johnson. Donald B. Efficient algorithms for shortest paths in sparse networks // Journal of the ACM. ‒ 1977. ‒ V. 24 (1). pp. 1–13.
Newman. M.E.J. Mathematics of Networks // In: The New Palgrave Dictionary of Economics. Palgrave Macmillan. London. ‒ 2008. URL: https://ccb-class.pbworks.com/f/newman_network_math.pdf.
Bonacich. P. Eigenvector-like measures of centrality for asymmetric relations // Social Networks.– 2001. URL: https://www.cse.cuhk.edu.hk/~cslui/CMSC5734/bonacich2001.pdf.
Alman. J.. Duan. R.. Vassilevska Williams. V.. Xu. Y.. Xu. Z.. Zhou. R. More Asymmetry Yields Faster Matrix Multiplication. arXiv preprint arXiv:2404.16349. ‒ 2024. URL:https://arxiv.org/pdf/2404.16349v2.
Kashin B.S.. Saakyan A.A. Ortogonalnyye ryady. Izd.2. dop. – M.: Bukinist. – 1999. – 560 p.
S. Kachmazh. G. Shgeyngauz. Teoriya ortogonalnykh ryadov. Izd-vo: «Nauka». M. 1958. 325 p.
Makarov. V. F.. Afonin. V.N. Ortogonalnyye funktsii Uolsha v sistemakh zashchity informatsii / V. F. Makarov. // Informatsionnyye sistemy i tekhnologii. – 2010. – V 2(58). – pp. 119-129
Kharmut. Kh.F. Peredacha informatsii ortogonalnymi funktsiyami. Per. s angl. Dyadyunova N.G. i Senina A.I. M.: «Svyaz». ‒ 1975. ‒ 267 p.
Magomed-Kasumov. M. G. Sistema funktsiy. ortogonalnaya v smysle Soboleva i porozhdennaya sistemoy Uolsha / M. G. Magomed-Kasumov // Matematicheskiy analiz i matematicheskoye modelirovaniye : Tezisy dokladov XIV Vladikavkazskoy molodezhnoy matematicheskoy shkoly v ramkakh IX nauchno-obrazovatelnogo Mezhdunarodnogo foruma. RSO-Alaniya. s. N.Tsey. 16–21 iyulya 2018 goda. – RSO-Alaniya. s. N.Tsey: Yuzhnyy matematicheskiy institut Vladikavkazskogo nauchnogo tsentra Rossiyskoy akademii nauk i Pravitelstva Respubliki Severnaya Osetiya-Alaniya. – 2018. – pp. 35-36.
Tsvetkov. K. Yu. Primeneniye dvumernykh nelineynykh signalov Franka-Uolsha. Franka-Krestensonav metode formirovaniya skrytogo kanala s kodovym uplotneniyem v strukture szhimayemykh videodannykh / K. Yu. Tsvetkov. V. E. Fedoseyev. E. S. Abazina // Naukoyemkiye tekhnologii v kosmicheskikh issledovaniyakh Zemli. – 2013. – 5. V 4. – pp. 32-38.
Kim. H.. Jung. I.. Chung. W.. Choi. S.. Hong D. Orthogonal Code-based Block Transmission for Burst Transmission. arXiv preprint arXiv:1705.00494. ‒ 2017. URL:https://arxiv.org/pdf/1705.00494.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИТ конгресс СНЭ
ISSN: 2307-8162