Self-Organization of a Group of Digital Twins of Unmanned Transport Vehicles for Production Tasks in a Smart Workshop

V. Protasov, I. Kurilenko, R. Miramedov

Abstract


The article presents a method for self-organization of a group of digital twins of unmanned transport vehicles (UTVs) in a virtual production space of a smart workshop. The aim is to ensure collision-free collective movement of UTVs during the transportation of workpieces and component parts. This is achieved by adapting the molecular dynamics method, where each vehicle is considered a "quasi-molecule" interacting with other vehicles and environmental elements of the smart workshop through attractive and repulsive potentials. A genetic algorithm is applied to optimize the time required for processing a batch of products, generating quasi-optimal sequences for selecting workpieces and components. Simulations conducted in the Unity environment confirmed the effectiveness of the approach: the deviation from the reference time and energy indicators was less than 5%, and collisions were completely absent during testing.


Full Text:

PDF (Russian)

References


Kara M. Evaluation of popular planning algorithms // International Journal of Electronics and Telecommunications. — 2024. — P. 13–22.

AbuJabal N., Baziyad M., Fareh R., Brahmi B., Rabie T., Bettayeb M.

A Comprehensive Study of Recent Path-Planning Techniques in Dynamic Environments for Autonomous Robots // Sensors — 2024. — no. 24.

Tang Z., Ma H. An overview of path planning algorithms // IOP Conference Series: Earth and Environmental Science. — 2024. — № 2

Wang, H., Pan, W. Research on UAV Path Planning Algorithms. IOP Conference Series: Earth and Environmental Science, vol 693. — 2021.— P. 012120.

Debnath, D., Vanegas, F., Sandino, J., Hawary, A. F., & Gonzalez, F. A Review of UAV Path-Planning Algorithms and Obstacle Avoidance Methods for Remote Sensing Applications // Remote Sensing. — 2024. — № 21.

Liu V. Metody planirovaniia puti v srede s prepiatstviiami // Matematika i matematicheskoe modelirovanie. — 2018. — P. 15–58

Patle B.K., Babu G., Pandey A., Parhi D.R.K., Jagadeesh A. A review: On path planning strategies for navigation of mobile robot // Defence Technology. — 2019. — P.582-606.

Diachuk A. K., Belozertseva A.N. Sravnitel'nyi analiz algoritmov postroeniia optimal'nogo marshruta poleta letatel'nogo apparata pri nalichii zon ugroz // Mezhdunarodnyi nauchno-issledovatel'skii zhurnal. — 2023. — №5 (131).

Wayahdi M.R., Ginting S.H.N., Syahputra D. Greedy, A-Star, and

Dijkstra’s Algorithms in Finding Shortest Path // International Journal of Advances in Data and Information Systems. — 2021. — P. 45–52.

Bing H., Lai. L. Improvement and Application of Dijkstra Algorithms // Academic Journal of Computing & Information Science. — 2022. — № 5 (5).

Wang Z., Cai J. Probabilistic roadmap method for path-planning in radioactive environment of nuclear facilities // Progress in Nuclear Energy. — 2018. — P. 113–120.

Huppi M., Bartolomei L., Mascaro R., Chli M. T-PRM: Temporal Probabilistic Roadmap for Path Planning in Dynamic Environments // IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). — 2022.

Jia Z., Lin P., Liu J., Liang L. Online cooperative path planning for multi-quadrotors in an unknown dynamic environment // Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. — 2022. — №236 (3).

Todi V., Sengupta G., Bhattacharya S. Probabilistic Path Planning using Obstacle Trajectory Prediction // CODS-COMAD: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data. — 2019. — P. 36–43.

Chen J., Yu J. An Improved Path Planning Algorithm for UAV Based on RRT // 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). — 2021. — P. 859–898.

Hao G., Lv Q., Huang Z., Zhao H, Chen W. UAV Path Planning Based on Improved Artificial Potential Field Method // Aerospace. — 2023. — P. 562.

Ma’Arif A., Rahmaniar W., Vera M. A., Nuryono A. A., Majdoubi R., Çakan A. Artificial potential field algorithm for obstacle avoidance in UAV quadrotor for environment // IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). — 2021. — P. 184–189.

Zhang H., Zhu Y., Liu X., Xu X. Analysis of Obstacle Avoidance Strategy for Dual-Arm Robot Based on Speed Field with Improved Artificial Potential Field Algorithm // Electronics. — 2021. — №10 (15).

Majeed, A., Hwang, S.O. A Multi-Objective Coverage Path Planning Algorithm for UAVs to Cover Spatially Distributed Regions in Urban Environments // Aerospace. — 2021. — №8 (343).

Pehlivanoglu V.Y., Pehlivanoglu P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems // Applied Soft Computing. — 2021. — №107796.

Shivgan R., Dong Z. Energy-Efficient Drone Coverage Path Planning using Genetic Algorithm // IEEE 21st International Conference on High Performance Switching and Routing (HPSR). — 2020. — P. 1–6.

Jones J. E. On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature // Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character. -1924.- Vol. 106. No. 738. — P. 441–462.

Grefenstette J.J. Optimization of Control Parameters for Genetic Algorithms // IEEE Transactions on Systems, Man, and Cybernetics. — 2007. — P. 122–128.

V.I. Protasov. Sistemy kollektivnogo intellekta. — M.: Vuzovskaia kniga, 2024. — P.230

Potapova Z. E., Protasov V. I., Sharonov A. V. Samoupravlenie v gruppe bespilotnykh letatel'nykh apparatov na osnove metoda olekuliarnoi dinamiki // Informatsionnye sistemy i tekhnologii 2019:

sbornik materialov XXV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii. — 2019. — P. 703–708


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность ИТ конгресс СНЭ

ISSN: 2307-8162