Exact solution of the three-state generalized double-chain Potts model
Abstract
An exact analytical solution of generalized three-state double-chain Potts model with multi-spin interactions which are invariant under cyclic shift of all spin values is obtained. The partition function in a finite cyclically closed strip of length L, as well as the free energy, internal energy, entropy and heat capacity in thermodynamic limit are calculated using transfer-matrix method. Partial magnetization and susceptibility are suggested as the generalization of usual physical characteristics of a system. Proposed model can be interpreted as a generalized version of standard Potts model (which has Hamiltonian expressed through Kronecker symbols) and clock model (with Hamiltonian expressed through cosines). Considering a particular example of the model with plenty of forces, model's ground states are found, figures of its thermodynamic characteristics and discussed their behaviour at low temperature are shown.
Full Text:
PDFReferences
Niss, M. History of the Lenz-Ising Model 1920–1950: From Ferromagnetic to Cooperative Phenomena. Arch. Hist. Exact Sci., 59, 267–318 (2005). DOI: 10.1007/s00407-004-0088-3
T. D. Silva, Vattika Sivised, A statistical mechanics perspective for protein folding from q-state Potts model. arXiv:1709.04813
Murata, K. K. Hamiltonian formulation of site percolation in a lattice gas. J. of Phys. A: Math. Gen. 12(1), 81 (1979). DOI 10.1088/0305-4470/12/1/020
Coniglio, A., Stanley, H. E., Klein, W. Site-bond correlated-percolation problem: a statistical mechanical model of polymer gelation. Phys. Rev. Lett. 42(8), 518 (1979). DOI: 10.1103/PhysRevLett.42.518
L. Sun, Y.F.Chang and X.Cai, A discrete simulation of tumor growth concerning nutrient influence. International Journal of Modern Physics B, vol. 18, Nos. 17–19 (2004) 2651–2657. DOI: 10.1142/S0217979204025853
Utkir A. Rozikov, Gibbs Measures in Biology and Physics. The Potts Model. World Scientific (2023). DOI: 10.1142/12694
L. Beaudin, A review of the Potts model. Rose-Hulman Undergraduate Math. Jour. 8(1) (2007)
H. A. Kramers, G. H. Wannier, Statistics of the Two-Dimensional Ferromagnet. Part I. Phys. Rev. 60, 252 (1941).
DOI: 10.1103/PhysRev.60.252
P.C.Hemmer, H.Holden, S.K.Ratkje, The collected works of Lars Onsager (With Commentary). World Scientific(1996). DOI: 10.1142/3027
R. B. Potts, Some generalized order-disorder transformations. Proc. Camb. Phil. Soc., 48 (1952) , pp. 106 - 109.
DOI: 10.1017/S0305004100027419
F.A. Kassan-Ogly, One-dimensional 3-state and 4-state standard Potts models in magnetic field. Phase Transitions, Vol. 71 , pp. 39-55. DOI:10.1080/01411590008228976
Kassan-Ogly, F.A., Filippov, B.N., Proshkin, A.I. et al. Twelve-state Potts model in a magnetic field. Phys. Metals Metallogr., 116, 115–127 (2015), DOI: 10.1134/S0031918X15020088
F.A. Kassan-Ogly, Modified 6-state and 8-state Potts models in magnetic field. Phase Transitions, Vol. 72, (2000) pp. 223-231, DOI: 10.1080/01411590008228991
M.A.Yurishchev, Double Potts chain and exact results for some two-dimensional spin models. JETP, Volume 93, pages 1113–1118, (2001) .
DOI: 10.1134/1.142718344
Khrapov P. V. Disorder Solutions for Generalized Ising and Potts Models with Multispin Interaction, Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education, 15(1) (2019), 33-44. DOI: 10.25559/SITITO.15.201901.33-44
Joanna A. Ellis-Monaghan, Iain Moffatt, Handbook of the Tutte Polynomial and Related Topics. Chapman & Hall (2024)
A.D. Sokal, The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Surveys in Combinatorics, edited by Bridget S. Webb, Cambridge University Press, 2005, pp. 173-226. DOI: 10.1017/CBO9780511734885.009
C.M. Fortuin, P.W. Kasteleyn, On the random-cluster model: I. Introduction and relation to other models. Physica, 57 (1972), 536-564, DOI: 10.1016/0031-8914(72)90045-6
R. A. Minlos, P. V. Khrapov, Cluster properties and bound states of the Yang–Mills model with compact gauge group. I. Theoret. and Math. Phys., 61, 1261–1265 (1984). DOI: 10.1007/BF01035013
F.A. Kassan-Ogly, B.N. Filippov, Correlation function in a one-dimensional 4-state standard Potts model with next-nearest-neighbor interaction. The Physics of Metals and Metallography, 95(6):518-530 (2003).
K.P. Kalinin and N.G. Berloff, Simulating Ising and Potts models and external fields with non-equilibrium condensates. Phys. Rev. Lett., 121, 235302 (2018). DOI: 10.1103/PhysRevLett.121.235302
Andreev A. S., Khrapov P. V. Simulating Ising-like models on quantum computer. Sovremennye informacionnye tehnologii i IT-obrazovanie= Modern Information Technologies and IT-Education. – 2023. – Vol. 19. – №. 3.
DOI: 10.25559/SITITO.019.202303.554-563
N.S. Ananikian, R.G. Ghulghazaryan, Exact solution of a Z(4) gauge Potts model on planar lattices, Phys. Rev. E 60, 5106 (1999),
DOI: 10.1103/PhysRevE.60.5106
R.G.Ghulghazaryan, N.S.Ananikian, Partition function zeros of the one-dimensional Potts model: The recursive method. J. Phys. A: Math. Gen. 36, 6297 (2003). DOI: 10.1088/0305-4470/36/23/302
R.G. Ghulghazaryan, N.S. Ananikian, P.M.A. Sloot, Yang-Lee zeros of the Q-state Potts model on recursive lattices. Phys. Rev. E 66, 046110 (2002). DOI: 10.1103/PhysRevE.66.046110
Alan D. Sokal, Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Function, Comb.Probab.Comput., 10 (2001), 41-77. DOI: 10.1017/S0963548300004612
Shu-Chiuan Chang, Robert Shrock, Exact Partition Function for the Potts Model with Next-Nearest Neighbor Couplings on Strips of the Square Lattice. Int. J. Mod. Phys. B15, vol. 15, No. 5, 443-478 (2001).
DOI: 10.1142/S0217979201004630
S.C. Chang, R. Shrock, Some exact results on the Potts model partition function in a magnetic field. J.Phys. A 42 (2009), no. 38, 385004, 5 pp.
DOI: 10.1088/1751-8113/42/38/385004
S.C. Chang, R. Shrock, Weighted Graph Colorings, J. Stat. Phys., 138, (2010) 496-542. DOI: 10.1007/s10955-009-9882-2
Shu-Chiuan Chang, Robert Shrock, Ground State Entropy of the Potts Antiferromagnet with Next-Nearest-Neighbor Spin-Spin Couplings on Strips of the Square Lattice. Phys. Rev. E, 62, 4650 (2000), DOI: 10.1103/PhysRevE.62.4650
Shu-Chiuan Chang, Robert Shrock, Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice. J. Stat. Phys., 130, 1011–1024 (2008). DOI: 10.1007/s10955-007-9461-3
Wu, F. Y. The Potts model. Reviews of Modern Physics, 54(1) (1982), 235–268. DOI: 10.1103/revmodphys.54.235
Khrapov, P.V. Cluster expansion and spectrum of the transfer matrix of the two-dimensional Ising model with strong external field. Theor. Math. Phys., 60,734–735 (1984), DOI:10.1007/BF01018259
Kashapov, I. A. Structure of ground states in three-dimensional using model with three-step interaction. Teoreticheskaya i Matematicheskaya Fizika 33.1 (1977): 110-118, DOI:10.1007/bf01039015
M. Isabel Garca-Planas, M. Dolors Magret, Eigenvectors of Permutation Matrices. Advances in Pure Mathematics, 5 (2015), 390-394.
DOI:10.4236/apm.2015.57038
Horn, R. A., Johnson, C. R., Matrix analysis. Cambridge university press (2012).
Cardano G., Witmer T. R., Ore O., The rules of algebra: Ars Magna. Courier Corporation, 685 (2007).
Tabachnikov S.L., Fuks D.B., Mathematical divertissement. MCNMO, (2011).
Baxter R.J. Exactly solved models in statistical mechanics. Elsevier, (2016).
P. Khrapov, N. Volkov, Exact solution of generalized triple Ising chains with multi-spin interactions. arXiv:2406.10683
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность ИБП для ЦОД СНЭ
ISSN: 2307-8162