Formation of engineering thinking of schoolchildren by means of 3D modeling in the context of the implementation of STEAM education technologies

T. A. Semenkova, A. Yu. Fedosov

Abstract


The article reveals the relevance of the development of engineering thinking among schoolchildren in the context of the digital economy and technological progress. It is emphasized that the ability to engineering thinking, including a systematic approach to problem solving, analytical thinking and a creative approach to developing new solutions, is necessary for the successful development and application of knowledge in complex areas. The authors draw attention to the interdisciplinary nature of this process, which requires a combination of various educational approaches and the integration of practice-oriented techniques. The key components of the development of engineering thinking, such as the practical application of knowledge, teamwork, research approach and project activities focused on real problems, are highlighted in the article as the main conditions for successful skill formation. It is proved that it is advisable to build the 3D modeling methodology on a variety of educational methods, including interactive and remote technologies, which expand the possibilities for in-depth mastering of educational material. Special attention is paid to active learning within the framework of the STEAM approach, which combines scientific and artistic elements, motivating students to research and creatively solve practical problems. The authors emphasize that STEAM education not only provides students with knowledge, but also develops practical skills necessary for the application of innovative technologies in solving complex problems. The article substantiates the prospects of the 3D modeling teaching methodology as an effective means for the formation of engineering thinking among schoolchildren studying in specialized classes and preparing them for the requirements of the modern labor market. The article emphasizes the importance of using virtual and augmented reality technologies as a promising direction for improving the level of engineering thinking of schoolchildren. The integration of these technologies allows students not only to visualize complex concepts, but also to actively participate in modeling, which also contributes to the formation of critical and analytical thinking.

Full Text:

PDF (Russian)

References


S. M. Konyushenko, and S. V. Kuzmin, “STEAM education: professional training of future teachers of mathematics and computer science,” Izvestia of the Baltic State Academy of the Fishing Fleet: psychological and pedagogical sciences, no. 4(50), pp. 185-189, 2019.

A. Yu. Fedosov, and T. A. Semenkova, “Formation of Basic Prototyping Skills at the Stage of Basic General Education,” in Informacionnye sistemy i tekhnologii: materialy mezhdunarodnogo nauchnogo kongressa po informatike, V 3 ch., Minsk, 27–28 oktyabrya 2022 goda, T. 3, Minsk, Belorusskij gosudarstvennyj universitet, 2022, pp. 206-211. [In Russian]

T. N. Lebedeva, “Inzhenernoe myshlenie: opredelenie i sostav ego komponentov,” Aktual'nye problemy gumanitarnyh i estestvennyh nauk, no 4-3, pp. 66-68, 2015. [In Russian]

M. E. Chekulaeva, and N. V. Sidorova, “The Development of Engineering Thinking of Students by Involving Them in the Compilation of Applied Tasks,” Vestnik nauki i obrazovaniya, no 12-1(90), pp. 61-65, 2020. [In Russian]

L. M. Andryukhina, B. N. Guzanov, and S. V. Anakhov, “Engineering Thinking: Vectors of Development in the Context of the Transformation of the Scientific Picture of the World,” The Education and Science Journal, vol. 25, no 8, pp. 12-48, 2023, doi: 10.17853/1994-5639-2023-8-12-48. [In Russian]

O. N. Filatova, O. Yu. Ryabkov, and E.L. Ermolaeva, “Formation of Engineering Thinking in Students in Classes of Educational Robotics Formirovanie inzhenernogo myshleniya u obuchayushchihsya na zanyatiyah obrazovatel'noj robototekhniki,” Problems of modern pedagogical education, no 68-4, pp. 245-247, 2020. [In Russian]

T. M. Lukashenko, “Formirovanie inzhenernogo myshleniya na urokah anglijskogo yazyka,” Mentor, no 3, pp. 59-61, 2019. [In Russian]

R.E. Paterson, “Intuitive cognition and models of human–automaton interaction,” Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 59(1), pp. 101-115, 2017.

N.A. Bushmeleva, et al., “Peculiarities of Engineering Thinking Formation Using 3D Technology,” European journal of contemporary education, vol. 9(3), pp. 529-545, 2020.

K. I. Derevyanko, V. P. Orlovskaya, and I. G. Filippova, “Creative Thinking as a Soft Skill of an Event Industry Specialist,” Economics and Management, vol. 28, no 3, pp. 267-280, 2022. [In Russian]

I. A. Legkova, S. A. Nikitina, V. P. Zarubin, and V. E. Ivanov, “Vizualizaciya uchebnogo materiala sredstvami sistemy KOMPAS-3D,” in Sovremennye problemy vysshego obrazovaniya: materialy VII Mezhdunarodnoj nauchno-metodicheskoj konferencii, Kursk, 28 aprelya 2015 goda, S. G. Emel'yanov (ed.), Kursk, Yugo-Zapadnyj gosudarstvennyj universitet, 2015, pp. 34-38. [In Russian]

G.V. Romanova, “Engineering Creativity Development as a Topical Issue of the Higher and Further Vocational Education: Western Countries Experience,” Upravlenie ustojchivym razvitiem, no 1(08), pp. 114-118, 2017. [In Russian]

A. C. Bayambaeva, and Z. V. Abdisheva, “Developing Students' Critical Thinking as a Way of Organizing an Interactive Educational Process,” Vestnik SKU im. M. Kozybaeva, no 4(49), pp. 265-270, 2020. [In Russian]

G. V. Nikitina, and O. S. Elshanskaya, “The Forming the Prerequisites of Engineering Thinking in Preschoolers Through Construction,” Gumanitarnye nauki i obrazovanie, vol. 10, no 4(40), pp. 77-83, 2019. [In Russian]

A. Yu. Rozhik, “Historical Stages of Engineering Thinking Formation,” Bulletin of the South Ural State University, series "Education. Educational Sciences, vol. 9, no 2, pp. 98-113, 2017, doi: 10.14529/ped170210. [In Russian]

S. V. Zenkina, and M. V. Savchenkova, “Ispol'zovanie 3D redaktorov v urochnoj i vo vneurochnoj deyatel'nosti,” Infokom, no 1(2), pp. 45-53, 2018. [In Russian]

O. M. Korchazhkina, “Rol' vizualizacii v formirovanii inzhenernogo myshleniya pri izuchenii veroyatnostnyh processov,” in Nastoyashchee i budushchee fiziko-matematicheskogo obrazovaniya: Materialy dokladov V vserossijskoj nauchno-prakticheskoj konferencii, Kirov, 26–27 oktyabrya 2018 goda, Yu. A. Saurov (ed.), Kirov, Raduga-PRESS, 2018, pp. 121-125. [In Russian]

M. Yu. Sizova, “Formirovanie inzhenernogo myshleniya shkol'nikov v processe proektnoj deyatel'nosti po matematike,” in Formirovanie inzhenernogo myshleniya v processe obucheniya : materialy mezhdunarodnoj nauchno-prakticheskoj konferencii, Ekaterinburg, 01 aprelya 2016 goda, T. N. Shamalo (ed.), Ekaterinburg, Ural'skij gosudarstvennyj pedagogicheskij universitet, 2016, pp. 162-166. [In Russian]

M. R. Shabalina, and A. N. Sokolova, “Osobennosti prepodavaniya matematiki v kontekste formirovaniya konstruktivnogo myshleniya u studentov inzhenernyh profilej,” Al'manah mirovoj nauki, no 10-2(13), pp. 72-75, 2016. [In Russian]

E. V. Savchenko, “Razvitie abstraktno-logicheskogo myshleniya studentov v processe resheniya zadach po kursu obshchej fiziki,” Modern Science, no 12-4, pp. 358-362, 2020. [In Russian]

O. N. Han, “Razvitie tvorcheskogo inzhenernogo myshleniya pri izuchenii disciplin «Russkij yazyk i delovye kommunikacii», «Russkij yazyk i etika delovogo obshcheniya»,” Tendencii razvitiya nauki i obrazovaniya, no 89-2, pp. 149-151, 2022. [In Russian]

O. V. Knyazeva, “Development of Engineering Thinking in the Lessons of History: From Pedagogical Practice,” in Novye pedagogicheskie issledovaniya: sbornik statej, Penza, Nauka i Prosveshchenie, 2020, pp. 78-80. [In Russian]

L. S. Vygotskij, “Sobranie sochinenij: v 6-ti tomah, 6: Nauchnoe nasledstvo,” Moskva, 1984, pp. 64-67. [In Russian]

V. N. Anis'kin, at al., “Ispol'zovanie didakticheskogo potenciala STEM- i STEAM-texnologij v reshenii zadach cifrovizacii obrazovaniya,” in Vysshee gumanitarnoe obrazovanie XXI veka: problemy i perspektivy: mat-ly XIV mezhd. nauch.-prakt. konf., Samara, SGSPU, 2019, pp. 19-24. [In Russian]

E. V. Vasilyeva, A. O. Zhukova, D. Khu, at al., “Additive Manufacturing Technologies in the Educational Process,” in Perspektivnye mashinostroitel'nye tekhnologii: sbornik nauchnyh trudov Mezhdunarodnoj nauchno-prakticheskoj konferencii, Sankt-Peterburg, 21–25 noyabrya 2022 goda, Sankt-Peterburg, POLITEKH-PRESS, 2023, pp. 204-210. [In Russian]

E. Ya. Arshanskij, and N. S. Sologub, “STEAM-obrazovanie: ot modeli k prakticheskoj realizacii,” Adukacyya і vyhavanne, no 9(345), pp. 22-30, 2020. [In Russian]

O. V. Berdyugina, “Ispol'zovanie sistemy avtomatizirovannogo proektirovaniya KOMPAS-3D v podgotovke inzhenerov dlya agropromyshlennogo kompleksa,” in Nauka, obrazovanie, innovacii: aprobaciya rezul'tatov issledovanij: Materialy Mezhdunarodnoj (zaochnoj) nauchno-prakticheskoj konferencii, Neftekamsk, 17 dekabrya 2019 goda, A. I. Vostrecova (ed.), Neftekamsk, Mir nauki, 2019, pp. 715-721. [In Russian]

T. I. Anisimova, F. M. Sabirova, and O. V. Shatunova, “Training teachers for STEAM-education,” Higher Education Today, no 6, pp. 31-35, 2019, doi: 10.25586/RNU.HET.19.06.P.31. [In Russian]

R. F. Bryantseva, “Integrated Approach in Learning of Informatics on the Example of Using Kompas-3D,” Nauka i perspektivy, no 2, pp. 27-30, 2017. [In Russian]

I. N. Vasiliev, “Development of digital tasks for professionally oriented classes,” Pedagogical education and science, no 14(1), pp. 21-29, 2022.

E. S. Morozova, “Digital education: organization of independent work of students,” Innovations in pedagogy, no 6(1), pp. 23-31, 2022.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность IT Congress 2024

ISSN: 2307-8162