A Comparative Study for Natural Image Augmentation Methods

Maksim V. Poryvai

Abstract


This paper deals with natural image augmentation methods, i.e., those whose  results are close to the natural environmental effects that machine learning  models may encounter in industrial applications: from weather conditions; from  the operation or malfunction of environmental perception devices (e.g.  cameras); and so on. Structuring and analyzing natural image augmentation methods can bring significant practical relevance as a guide for researchers of  machine learning methods, as well as those developing machine learning models directly for industry. The currently known methods of natural image  augmentation in this paper have been divided into the following groups: those based on adding weather artifacts, camera artifacts or substituting the  background for the main object in the image. The paper also considers existing  software libraries for image augmentation: Albumentations, which has  integration with PyTorch; ImgAug, which provides a wide range of  possible natural augmentations; Augmentor, which provides the ability to add a variety of camera distortion effects to images. The CIFAR-10 dataset was selected for an experimental study of natural image augmentation techniques; augmentations were applied one at a time with a 50% probability each.


Full Text:

PDF (Russian)

References


Hendrycks D., Dietterich T. G. Benchmarking neural network robustness to common corruptions and perturbations // ArXiv. — 2019. —

URL: https://api.semanticscholar.org/CorpusID:56657912, Retrieved: Sep, 2024.

Robust traffic sign recognition against camera failures / M. Atif, A. Ceccarelli, T. Zoppi et al. // IEEE Open Journal of Intelligent Transportation Systems. — 2022. — Vol. 3. — P. 709–722.

3d common corruptions and data augmentation / O. Kar, T. Yeo, A. Atanov, A. Zamir // 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. — 2022. — P. 18941–18952.

Rain rendering for evaluating and improving robustness to bad weather / M. Tremblay, S. S. Halder, R. de Charette, Lalonde J.- F. // International Journal of Computer Vision. — 2021. — 02. — Vol. 129. — P. 1–20.

Unpaired image-to-image translation using cycle-consistent adversarial networks / J.-Y. Zhu, T. Park, P. Isola, A. A. Efros // ArXiv. —

— URL: https://doi.org/10.48550/arXiv.1703.10593, Retrieved: Sep, 2024.

Let’s get dirty: Gan based data augmentation for camera lens soiling

detection in autonomous driving / M. Uřičář, G. Sistu, H. Rashed et al. // 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). — 2021. — P. 766–775.

Kamann C., Rother C. Benchmarking the robustness of semantic segmentation models // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). — 2020. — P. 8825–8835.

McLaughlin N., Del Rincon J. M., Miller P. Data-augmentation for reducing dataset bias in person re-identification // 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). — 2015. — P. 1–6.

Albumentations: fast and flexible image augmentations. — URL: https://albumentations.ai. Retrieved: Sep, 2024.

Pytorch framework. — URL: https://pytorch.org/. Retrieved: Sep, 2024.

Imgaug library documentation. — URL: https://imgaug.readthedocs. io/en/latest. Retrieved: Sep, 2024.

Augmentor documentation. — URL: https://augmentor.readthedocs.io/en/stable. Retrieved: Sep, 2024.

Cifar-10 dataset. — URL: https://www.cs.toronto.edu/~kriz/cifar.html. Retrieved: Sep, 2024.

Krizhevsky A., Sutskever I., Hinton G. E. Imagenet classification with deep convolutional neural networks // Communications of the ACM. — 2017. — Vol. 60. — P. 84–90.

Multi-class classification metrics. — URL: https://www.evidentlyai. com/classification-metrics/multi-class-metrics. Retrieved: Sep, 2024.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность IT Congress 2024

ISSN: 2307-8162