On methods for solving computer modeling problems with limited and extended libraries of built-in functions

Tagir Abdulmyanov, Sergey Soloviev, Olga Solovyova, Vyacheslav Epifanov

Abstract


The possibility of using the results of complex analytical calculations obtained using the MAPLE computer system in modeling gas dynamics in the ANSYS system is considered. It is shown that, despite the limited ability to use the library of built-in special functions in the ANSYS system, the results of complex analytical calculations can be connected to this system as user-defined functions (UDFs). The custom function was developed based on B. Garfinkel's analytical theory of librational motions of Jupiter co-orbital asteroids. Based on the same theory, in this work, formulas for the dynamic viscosity and density of the ring are obtained for the case of long-period disturbances. A user-defined function (UDF) was obtained for dynamic viscosity using MAPLE CAB as a series of zero- and first-order Bessel functions. Then, Bessel functions were converted to trigonometric functions. The basic requirements for developing and connecting a UDF for the ANSYS system and the program code for a dynamic viscosity UDF are presented. The results of this work can be used to simulate the movement of gas inside a circular disk in the ANSYS system, as well as to study the dynamics of gas and dust in gas-dust disks of young single stars.


Full Text:

PDF (Russian)

References


Abdulmyanov T. Modeling viscous dynamics in dust discs around young stars using the maple system. In: Proceedings on Digital Technologies for Teaching and Learning (DTTL-2021). Кazan; 2021, p. 7-13. (In Russ.) EDN: TJMIPW

Hinze J. O. Turbulence. McGraw-Hill Publishing Co., New York. 1975.

Kim S.E., Choudhury D., Patel B. Computations of Complex Turbulent Flows Using the Commercial Code Fluent. In: Salas M.D., Hefner J.N., Sakell L. (eds) Modeling Complex Turbulent Flows. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 7. Springer, Dordrecht; 1999. p. 259-276. https://doi.org/10.1007/978-94-011-4724-8_15

Sarkar S., Hussaini M. Y. Computation of the sound generated by isotropic turbulence. NASA Contract Report 93-74, NASA Langley Research Center, Hampton, VA. 1993.

Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows, Technical Report AIAA-92-0439, American Institute of Aeronautics and Astronautics. 1992.

Wilcox D.C. Turbulence Modeling for CFD. DCW Industries, Inc. La Canada, California. 1998.

Rohlfs K. Lectures on Density Wave Theory. Lecture Notes in Physics, Vol. 69. Springer, Berlin, Heidelberg; 1977. 184 p. https://doi.org/10.1007/3-540-08448-7

Abdulmyanov T. On the forms of accretion, of interstellar gas and dust, during the formation of single stars and their planetary systems. Open Astronomy. 2021;30(3):83-90. https://doi.org/10.1515/astro-2021-0010

Abdulmyanov T. Simulation of quasi-periodic gas motion in disks using the ansys system. In: Proceedings on Digital Technologies for Teaching and Learning (DTTL-2022). Кazan; 2022, p. 10-15. (In Russ.) EDN: AXFCDU

Abdulmyanov T. Influence of dynamic viscosity on quasi-periodic motion of bodies in gas and dust disks. In: Proceedings on Digital Technologies for Teaching and Learning (DTTL-2023). Кazan; 2023, p. 6-11. (In Russ.) EDN: MGMDGU.

Abdulmyanov T. Modelirovanie processa formirovanija vihrevyh dvizhenij v gazopylevyh diskah pri pomoshhi sistem komp'juternyh vychislenij. Кazan; КGEU Publ.; 2022. 391 p. (In Russ.) EDN: JSZNHK

Garfinkel B., Jupp A., Williams C. A Recursive von Zeipel Algorithm for the Ideal Resonance Problem. Astronomical Journal. 1971;76:157. https://doi.org/10.1086/111099

Garfinkel B. Theory of libration. Celestial Mechanics. 1976;13(2):229-246. https://doi.org/10.1007/BF01232726

Garfinkel B. Theory of the Trojan asteroids: Part I. Astronomical Journal. 1977;82:368. https://doi.org/10.1086/112149

Garfinkel B. Theory of the Trojan asteroids: Part II. Celestial Mechanics.1980;18(3):259-275. https://doi.org/10.1007/BF01230167

Abdulmyanov T. Opredelenie harakteristik libracionnyh dvizhenij asteroidov vblizi soizmerimostej 1/1, 4/3, 3/2, 7/3, 5/2, 3/1 srednih dvizhenij asteroidov i Jupitera. Solar System Research (Astronomicheskii Vestnik). 2001;35(5):449. (In Russ.)

Gauss K.F. Werke. 1866. Bd. III. 655 p.

Aksenov E.P. Spetsial’nye funktsii v nebesnoj mekhanike [Special

functions in celestial mechanics]. Moscow: Nauka; 1986. 320 p. Zbl 0667.70002 (In Russ.)

Abdulmyanov T.R. A General Model of Celestial Body Formation from Initial Condensation of Gas and Dust Particles to the "Embryos" of Planets. Moscow University Physics Bulletin. 2019;74(4):309-322. https://doi.org/10.3103/S0027134919040039

Abdulmyanov T.R. Large-scale structure of gas-and-dust disks and stability of gas-dynamic equilibrium of the dust envelopes of young stars. Astrophysical Bulletin. 2020;75(2):132-139 (2020). (In Russ., abstract in Eng.) EDN: YQCJIZ

Aupoix B., Spalart P.R. Extensions of the Spalart-Allmaras turbulence model to account for wall roughness. International Journal of Heat and Fluid Flow. 2003;24(3):454-462. https://doi.org/10.1016/S0142-727X(03)00043-2

Dacles-Mariani J, Zilliac G.G., Chow J.S., Bradshaw P. Numerical/Experimental Study of a Wingtip Vortex in the Near Field. AIAA Journal. 1995;33(9):1561-1568. https://doi.org/10.2514/3.12826

Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal. 1994;32(8):1598-1605. https://doi.org/10.2514/3.12149

Menter F.R. Review of the SST Turbulence Model Experience from an Industrial Perspective. International Journal of Computational Fluid Dynamics. 2009;23(4):305-316. https://doi.org/10.1080/10618560902773387

Orszag S.A., Yakhot V., Flannery W.S., Boysan F., Choudhury D., Maruzewski J., Patel B. Renormalization-group modeling and turbulence simulations. In: So R.M.C., Speziale G., Launder B. E. (eds) International Conference on Near-wall turbulent flows. Tempe, Arizona: Elsevier; 1993. p. 1031-1046.

Orszag S.A., Yakhot V., Flannery W.S., Boysan F., Choudhury D., Maruzewski J., Patel D. Renormalization Group Modeling and Turbulence Simulations. In: International Conference on Near-Wall Turbulent Flows. Tempe, Arizona; 1993. p. 1031-1046.

Shih T.-H., Liou W.W., Shabbir A., Yang Z., Zhu J. A New – Eddy-Viscosity Model for High Reynolds Number Turbulent Flows – Model Development and Validation. Computers & Fluids. 1995;24(3):227-238. https://doi.org/10.1016/0045-7930(94)00032-T

Yakhot V., Orszag S.A. Renormalization Group Analysis of Turbulence I Basic Theory // Journal of Scientific Computing. 1986;1(1):1-51.


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность IT Congress 2024

ISSN: 2307-8162