Mathematical model of the iterative method of evolutionary coordination of solutions
Abstract
Full Text:
PDF (Russian)References
Popov B.M. Metaphysics of nature-like technologies. ‒ Voronezh:
Kvarta. ‒2019. ‒ 60 p.
Alexandros Tzanetos, Iztok Fister Jr., Georgios Dounias. A comprehensive database of Nature-Inspired Algorithms // Data in Brief. Volume 31. 2020. P. 2–9. https://doi.org/10.1016/j.dib.2020.105792
Tkachenko Yu. L. What technologies are nature-like? A new topic for conceptual discussion // Advances in modern science. – 2016. –№3, Vol. 1. P.101–107
Yegorova-Gudkova Т. Management that resemble natural ones and design of self-organizing economic systems//International scientific journal "Science. Business. Society". – 2018. –Vol. 3, Issue 2. –P. 75-77.
A.A. Zhdanov. General systems theory: analysis and additions. Electronic edition. M.: Publishing house "Laboratory of Knowledge". – 2024 – 192 p.
Karpov V.E. Methodological problems of evolutionary computing // Artificial intelligence and decision making. – 2012. – No. 4. – pp. 95-102.
Fields, Chris, James F. Glazebrook, and Michael Levin.. Principled Limitations on Self-Representation for Generic Physical Systems // Entropy. –2024. Vol. 3. P. 1–16.
V.I. Protasov. Methodology and practice of building collective intelligence systems. Dissertation for the degree of Doctor of Technical Sciences. –Nizhny Novgorod, NSTU named after. Alekseeva. –2021. –314 p,
L.V. Markaryan. Models and algorithms of collective intelligence systems. – M: Ed. MISiS. – 2020. – 104 p.
Markaryan L.V. Analysis and optimization of the decision-making process based on the method of evolutionary coordination of decisions // Mining information and analytical bulletin (scientific and technical journal). –2013, No. 9. P. 301-306.
] Protasov V.I., Mirakhmedov R.O., Potapova Z.E., Sharnin M.M., Sharonov A.V. Reducing errors of the first type when recognizing the contours of aircraft using the collective intelligence of UAVs // News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences. –2018, No. 6-3 (86). –C. 70-82.
Protasov, Z.E. Potapova. Methodology for radically reducing the likelihood of making erroneous decisions in collective intelligence systems // International scientific journal “Modern information technologies and IT education”. –2019, volume 15, no. 3. – pp. 588 – 601.
R. Mirakhmedov, Z. Potapova, V. Protasov . MESING – a new method of organizing the joint work of neural networks and its metrology // Journal of Physics: Conference Series, 2021, v. 1727, 012004. DOI 10.1088/1742-6596/1727/1/012004.
Protasov V.I. Collective intelligence systems. Theory and practice. – M: University book. – 2024. – 230 p
Turchin, V.F. Phenomenon of science. Cybernetic approach to evolution. -M.: Sinteg, 1993. — 456 p.
Rasch G. Probabilistic Models for Some Intelligence and Attainment Tests // Expanded Edition, with Foreword and Afterword by B.D. Wright. Chicago: University of Chicago Press,1980.
Condorcet, marquis de (Marie-Jean-Antoine-Nicolas de Caritat) (1785), Essai sur l’application de l’analyse à la probabilité des décisionsrendues à la pluralité des voix. Imprimerie Royale, Paris.
Holland, J.H. Adaptation in natural and artificial systems. –University of Michigan Press, Ann Arbor, 1975. —228 p.
Y. Koriyama. A resurrection of the Condorcet Jury Theorem Balázs Szentes // Theoretical Economics. 2009, v.4. — P. 227–252.
V. Protasov. Mathematical model of the method of evolutionary coordination of decisions // News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences. – 2012, No. 2 (46). – P. 29-37.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162