Modeling a fluid using a particle system

Roman Reutov, Tatyana Prikhodko

Abstract


The article discusses one of the important problems of modern computer graphics - the problem of physically accurate animation of such complex objects as water, smoke, fire. These objects can take on complex physical shapes and flow around other objects on the stage. Their behavior depends on many factors: the influence of gravity; flows of other gases and liquids; pressure. To describe this dynamic behavior, computationally complex equations are used, which can be prohibitively expensive for the computer graphics field to execute, especially if the animation needs to be done in real time. Without a reliable physical model of water and smoke, it is extremely difficult to create photorealistic animation, since the incorrect behavior of the described objects immediately catches the eye. This article discusses a physical model of water built on the basis of an implicit particle system. The algorithm is a hybrid one, using both a particle system and vector fields to model the behavior of water and is based on the existing PIC/FLIP algorithm. An approach to implementing the algorithm using Cuda technology is considered - a GPGPU hardware and software solution that is well suited for algorithms of the PIC and FLIP families. However, the approach to solving the problem can be used with other software solutions, such as OpenMP.

 


Full Text:

PDF (Russian)

References


Acheson, D. J. 1990. Elementary Fluid Dynamics // Oxford Applied Mathematics and Computing Science Series, Oxford University Press – ISBN 978-0-19-859679-0 – Текст: непосредственный

Robert Bridson. 2015. Fluid Simulation for Computer Graphics // MDPI AG, Sensors — ISBN 978-1-56881-326-4. — Текст : непосредственный.

Laplace operator. 1994. Encyclopedia of Mathematics // EMS Press // Текст: электронный – URL: https://encyclopediaofmath.org/index.php?title=Laplace_operator (дата обращения: 28.06.2023)

Fluid Flow for the Rest of Us: Tutorial of the Marker and Cell Method in Computer Graphics. 2005. Текст: электронный. — URL: https://cg.informatik.uni-freiburg.de/intern/seminar/gridFluids_fluid_flow_for_the_rest_of_us.pdf (дата обращения: 28.06.2023)

Zou, C., Yin, Y.Multi-phase Fluid Simulation Based on Narrow-Band FLIP Method. // Текст: электронный. 2018. https://doi.org/10.1007/s13319-018-0173-z (дата обращения: 03.07.2023)

Chmielewski, Sz., Tompalski, P. 2017 Estimating outdoor advertising media visibility with voxel-based approach. Applied Geography. // Текст: электронный // Социальная сеть для учёных: официальный сайт // URL: https://www.researchgate.net/publication/ 318744436_Estimating_outdoor_advertising_media_visibility_with_voxel-based_approach (дата обращения: 15.07.2023)

Overview of Indoor Navigation Techniques. 1988. — Текст : электронный // Социальная сеть для учёных: официальный сайт. — URL: https://www.researchgate.net/publication/222452290_FLIP_A_Low-Dissipation_Particle-in-Cell_Method_for_Fluid_Flow (дата обращения: 10.07.2023).

Birdsall, Charles K.; A. Bruce Langdon (1985). Plasma Physics via Computer Simulation. McGraw-Hill. ISBN 0-07-005371-5. – Текст: непосредственный.

CUDA C++ Programming Guide. 2023 – Текст: электронный – URL: https://docs.nvidia.com/cuda/pdf/ CUDA_C_Programming_Guide.pdf

Feynman, Richard P. 1982. Simulating physics with computers // International Journal of Theoretical Physics. 21 (6–7): 467–488 // текст: электронный // URL: https://web.archive.org/web/20170812065758/http://www.mrtc.mdh.se/~gdc/work/ARTICLES/2014/3-CiE-journal/Background/SimulatingPhysicsWithComputers.pdf (дата обращения: 01.07.2023)


Refbacks

  • There are currently no refbacks.


Abava  Кибербезопасность MoNeTec 2024

ISSN: 2307-8162