Development and research of software to improve the efficiency of motion detection in the intelligent video surveillance system
Abstract
Full Text:
PDF (Russian)References
Proskurin A.V., Kovtunenko I.I. Selection of informative images from a sequence based on object motion detection // Reshetnevskiye readings. - 2018. - no. 2. - S. 287-288.
Istratova E.E., Bukhamer E.A., Tomilov I.N. Development of a combined motion detection method for an intelligent video surveillance system // International Journal Of Open Information Technologies. - 2022. - No. 1. - S. 54-60.
Abbas Q., Ibrahim M.E., Jaffar M.A. A comprehensive review of recent advances on deep vision systems // Artif Intell Rev 52, 39–76 (2019). https://doi.org/10.1007/s10462-018-9633-3.
Molina-Cabello M.A., García-González J., Luque-Baena R.M. The effect of downsampling–upsampling strategy on foreground detection algorithms // Artif Intell Rev 53, 4935–4965 (2020). https://doi.org/10.1007/s10462-020-09811-y.
Lee G., Wang M.J., Li H.T. A motion-adaptive deinterlacer via hybrid motion detection and edge-pattern recognition // Image Video Proc. — 741290 (2008). https://doi.org/10.1155/2008/741290.
Nokeeva R.M. Development of software for the optimal operation of the video recorder // Scientific research. - 2019. - No. 3 (29). - S. 15-19.
Mohtavipour, S.M., Saeidi, M. & Arabsorkhi, A. A multi-stream CNN for deep violence detection in video sequences using handcrafted features. Vis Comput 38, 2057–2072 (2022). https://doi.org/10.1007/s00371-021-02266-4.
Chillet, D., Hübner, M. Special issue on design and architectures of real-time image processing in embedded systems. J Real-Time Image Proc 9, 1–3 (2014). https://doi.org/10.1007/s11554-014-0401-6.
Pedre, S., Krajník, T., Todorovich, E. et al. Accelerating embedded image processing for real time: a case study. J Real-Time Image Proc 11, 349–374 (2016). https://doi.org/10.1007/s11554-013-0353-2.
Jeon, G., Chehri, A. Special issue on deep learning for emerging embedded real-time image and video processing systems. J Real-Time Image Proc 18, 1167–1171 (2021). https://doi.org/10.1007/s11554-021-01156-1.
Lacassagne, L., Manzanera, A., Denoulet, J. et al. High performance motion detection: some trends toward new embedded architectures for vision systems. J Real-Time Image Proc 4, 127–146 (2009). https://doi.org/10.1007/s11554-008-0096-7.
Seznec, M., Gac, N., Orieux, F. et al. Real-time optical flow processing on embedded GPU: an hardware-aware algorithm to implementation strategy. J Real-Time Image Proc 19, 317–329 (2022). https://doi.org/10.1007/s11554-021-01187-8.
Thevenin, M., Paindavoine, M., Schmit, R. et al. A templated programmable architecture for highly constrained embedded HD video processing. J Real-Time Image Proc 16, 143–160 (2019). https://doi.org/10.1007/s11554-018-0808-6.
Dias, T., López, S., Roma, N. et al. Scalable Unified Transform Architecture for Advanced Video Coding Embedded Systems. Int J Parallel Prog 41, 236–260 (2013). https://doi.org/10.1007/s10766-012-0221-x.
Pal, S.K., Bhoumik, D. & Bhunia Chakraborty, D. Granulated deep learning and Z-numbers in motion detection and object recognition. Neural Comput & Applic 32, 16533–16548 (2020). https://doi.org/10.1007/s00521-019-04200-1.
Xiong, W., Lee, CM. & Ma, RH. Automatic video data structuring through shot partitioning and key-frame computing. Machine Vision and Applications 10, 51–65 (1997). https://doi.org/10.1007/s001380050059.
Kamranian, Z., Naghsh Nilchi, A.R., Sadeghian, H. et al. Joint motion boundary detection and CNN-based feature visualization for video object segmentation. Neural Comput & Applic 32, 4073–4091 (2020). https://doi.org/10.1007/s00521-019-04448-7.
Yubing, T., Cheikh, F.A., Guraya, F.F.E. et al. A Spatiotemporal Saliency Model for Video Surveillance. Cogn Comput 3, 241–263 (2011). https://doi.org/10.1007/s12559-010-9094-8.
Lee, G., Wang, MJ., Li, HT. et al. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition. J Image Video Proc 2008, 741290 (2008). https://doi.org/10.1155/2008/741290.
Ali, I., Mille, J. & Tougne, L. Adding a rigid motion model to foreground detection: application to moving object detection in rivers. Pattern Anal Applic 17, 567–585 (2014). https://doi.org/10.1007/s10044-013-0346-6.
Szolgay, D., Benois-Pineau, J., Megret, R. et al. Detection of moving foreground objects in videos with strong camera motion. Pattern Anal Applic 14, 311–328 (2011). https://doi.org/10.1007/s10044-011-0221-2.
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162