### On properties of maximally nonlinear functions of odd number of variables

#### Abstract

#### Full Text:

PDF (Russian)#### References

Logachev O. A., Salnikov A. A., Yashchenko V. V. Boolean functions in coding theory and cryptography. Providence (Rhode Island, USA) : American Mathematical Society, 2011.

Rothaus O. S. On “bent” functions // Journal of Combinatorial Theory, Series A. 1976. Vol. 20, no. 3. P. 300–305.

Tokareva N. N. Bent functions : Results and applications to cryptography. Amsterdam : Academic Press, 2015.

Mykkeltveit J. J. The covering radius of the (128, 8) Reed—Muller code is 56 // IEEE Transactions on Information Theory. 1980. Vol. IT-26, no. 3. P. 359–362.

Brualdi R. A., Litsyn S., Pless V. Covering radius // Handbook of Coding Theory, Volume 1 / Ed. by V. Pless, W. C. Huffman. Amsterdam; New York : Elsevier Science, 1998. P. 755–826.

Logachev O. A., Fedorov S. N., Yashchenko V. V. Boolean functions as points on the hypersphere in the Euclidean space // Discrete Mathematics and Applications. 2019. Vol. 29, no. 2. P. 89–101.

Logachev O. A., Fedorov S. N., Yashchenko V. V. On some invariants under the action of an extension of GA(n, 2) on the set of Boolean functions // Discrete Mathematics and Applications. 2022. Vol. 32, no. 3. P. 177–192.

Logachev O. A., Fedorov S. N., Yashchenko V. V. Pseudo-Boolean functions valued on hypershere // International Journal of Open Information Technologies. 2022. Vol. 10, no. 4. P. 10–14. [in Russian].

### Refbacks

- There are currently no refbacks.

Abava Кибербезопасность MoNeTec 2024

ISSN: 2307-8162