Discrete Event Modeling for Metro System

Oleg Pokusaev, Dmitry Namiot, Alexander Chekmarev

Abstract


This article discusses a discrete-event modeling system for metro passenger flows. Instead of playing out (emulating) input data streams, it is proposed to use the available historical information about metro passenger traffic, which is presented in the form of so-called correspondence matrices. The proposed model can use the collected data on passenger flows to predict the current load of the transport system. Also, this kind of model can be used as a basis for building a digital twin of the passenger traffic system in the metro. Such a twin will show the current system load at an arbitrary point in time. The model supports easy scaling and expansion. The article discusses modeling for the subway system, but the exact same scheme can be used for both urban rail systems and commuter rail traffic. Organization of management of the transport system in critical situations can be indicated as one of the models of application.


Full Text:

PDF (Russian)

References


Kuprijanovskij V. P. i dr. O rabotah po cifrovoj jekonomike //Sovremennye informacionnye tehnologii i IT-obrazovanie. – 2016. – T. 12. – #. 1. – S. 243-249.

Kuprijanovskij V. P. i dr. Cifrovaja zheleznaja doroga-prognozy, innovacii, proekty //International Journal of Open Information Technologies. – 2016. – T. 4. – #. 9. – S. 34-43.

Sokolov I. A. i dr. Gosudarstvo, innovacii, nauka i talanty v izmerenii cifrovoj jekonomiki (na primere Velikobritanii) //International Journal of Open Information Technologies. – 2017. – T. 5. – #. 6. – S. 33-48.

Namiot D. E. i dr. Cifrovye dvojniki i sistemy diskretno-sobytijnogo modelirovanija //International Journal of Open Information Technologies. – 2021. – T. 9. – #. 2. – S. 70-75.

Khajavi, Siavash H., et al. "Digital twin: vision, benefits, boundaries, and creation for buildings." IEEE Access 7 (2019): 147406-147419.

Kupriyanovsky V. et al. On Internet of Digital Railway //International Journal of Open Information Technologies. – 2016. – T. 4. – #. 12. – S. 53-68.

Tao, Fei, et al. "Digital twin driven prognostics and health management for complex equipment." Cirp Annals 67.1 (2018): 169-172.

Law, Averill M., W. David Kelton, and W. David Kelton. Simulation modeling and analysis. Vol. 3. New York: McGraw-Hill, 2000.

Tang, Jiangjun, George Leu, and Hussein A. Abbass. Simulation and Computational Red Teaming for Problem Solving. John Wiley & Sons, 2019.

Schmaranzer, David, Roland Braune, and Karl F. Doerner. "A discrete event simulation model of the Viennese subway system for decision support and strategic planning." 2016 Winter Simulation Conference (WSC). IEEE, 2016.

Li, Yang, et al. "Discrete-event simulations for metro train operation under emergencies: A multi-agent based model with parallel computing." Physica A: Statistical Mechanics and its Applications 573 (2021): 125964.

Bulygin M., Namiot D. A New Approach to Clustering Districts and Connections Between Them Based on Cellular Operator Data //2021 29th Conference of Open Innovations Association (FRUCT). – IEEE, 2021. – S. 71-80.

Nekraplonna, Mariia, and Dmitry Namiot. "Metro correspondence matrix analysis." International Journal of Open Information Technologies 7.7 (2019): 68-80.

Medvedenko S., Namiot D. Visual analysis of railway passenger traffic data //International Journal of Open Information Technologies. – 2021. – Т. 9. – №. 6. – С. 51-60.

Volkov A. A., Namiot D. E., Shneps-Shneppe M. A. O zadachah sozdanija jeffektivnoj infrastruktury sredy obitanija //International Journal of Open Information Technologies. – 2013. – T. 1. – #. 7. – S. 1-10.

Misharin, A., D. Namiot, and O. Pokusaev. "On Passenger Flow Estimation for new Urban Railways." IOP Conference Series: Earth and Environmental Science. Vol. 177. No. 1. IOP Publishing, 2018.


Refbacks

  • There are currently no refbacks.


Abava  Absolutech Convergent 2020

ISSN: 2307-8162