Modeling nonlinear evolutionary competing processes on the basis of the Lotka – Volterra modification
Abstract
Full Text:
PDFReferences
DOI: 10.25559/INJOIT.2307-8162.08.202011.03-12
Vol’terra V. Matematicheskaja teorija bor'by za sushсhestvovanie [The mathematical theory of struggle for existence]. Moscow, Science, 1976, 286 p. (in Russ.).
Kingsland S. Alfred J. Lotka and the origins of theoretical population ecology / Proceedings of the National Academy of Sciences Aug 2015. Vol. 112, № 31. P. 9493-9495.
Nikol’skij M.S. Ob upravlyaemykh variantakh modeli L. Richardsona v politologii [On the controllable variants of Richardson’s model in political science] / Tr. IMM UrO RAN, 2011. Vol 17, no. 1. pp. 121-128 (in Russ.).
Bratus' A.S., Novozhilov A.S., Platonov A.P. Dinamicheskie sistemy i modeli v biologii [Dynamical systems and models in biology] / M.: FIZMATLIT, 2009 (in Russ.).
Riznichenko G.Yu., Rubin A.B. Matematicheskie metody v biologii i ekologii. Biofizicheskaya dinamika produktsionnykh protsessov [Mathematical methods in biology and ecology. Biophysical dynamics of productional processes] / M.: Yurayt, 2018 (in Russ.).
Jedvards Ch.G. Differencial'nye uravnenija i kraevye zadachi: modelirovanie i vychislenie s pomoshсh'ju Mathematica, Maple i MATLAB. 3-e izdanie [Differential equations and boundary problems: modeling and calculation by means of Mathematica, Maple and MATLAB]. Moscow, Publishing House Vil'jams, 2008, 1094 p.
Brodskij Ju.I. Lekcii po matematicheskomu i imitacionnomu modelirovaniju [Lectures on mathematical modeling and simulation]. Moscow, Berlin: Direct media, 2015, 240 p. (in Russ.)
Arnol'd V.I. «Zhestkie» i «mjagkie» matematicheskie modeli [«Hard» and «Soft» mathematical models]. Moscow Center for Continuous Mathematical Education, 2004. 32 p. (in Russ.)
Vozmishcheva T. The limit passage of space curvature in problems of celestial mechanics with the generalized Kepler and Hooke potentials // Astrophysics and Space Science. 2016. Vol. 361, № 9. P. 1-7.
Vozmishcheva T.G. Traektornaya ekvivalentnost' zadachi dvukh tsentrov v ploskom prostranstve, v prostranstve Lobachevskogo i na sfere: predel'nyy perekhod (chast' 1) [Trajectory equivalence of the two-center problem in the flat space, in the Lobachevsky space and on a sphere: the limit passage (part 1)]. Vestnik IzhGTU imeni M.T. Kalashnikova, 2015, Vol. 18, no. 2, pp. 112 –116 (in Russ.).
Refbacks
- There are currently no refbacks.
Abava Кибербезопасность IT Congress 2024
ISSN: 2307-8162