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Abstract: The article analyses the advantages and 

disadvantages of existing methods for synthesizing automatic 

control systems in the state space. Based on this, a suitable 

method is proposed for synthesizing automatic control systems 

in the MATLAB environment, which has the advantages and 

eliminates the disadvantages of existing methods; an algorithm 

for implementing the proposed method in the MATLAB 

environment is presented. The proposed algorithm makes it 

possible to significantly reduce the complexity and time of 

automatic control systems synthesis in the state space. In 

addition, a method for synthesizing an automatic control 

system with two integral links in the state space is proposed. 

The optimal choice of the dominant pole ensures the high 

quality of the system. This system allows you to track the 

change in the input signal at a constant rate. 

 

Keywords: Synthesis of an automatic control system, state 

space, Ackermann method, speed tracking system. 

I. INTRODUCTION 

Currently, MATLAB is widely used in research 

(including synthesis) of automatic control systems. For 

example, Control System Toolbox [1, 2] and Simulink [2] 

are used in the study of automatic control systems 

(determination of transfer functions, zeros and poles of the 

system; construction of logarithmic-amplitude 

characteristics and logarithmic-phase-frequency 

characteristics of an open system; construction of the 

Nyquist curve; construction of a root hodograph; transition 

characteristics of a closed system)... In addition, MATLAB 

has the Sisotool Tool [3], the Ackermann, and place 

commands [4, 5], which help designers synthesise automatic 

control systems. The author wishes to expand the possibility 

of using MATLAB in the design of automatic control 

systems in the state space. Therefore, the article proposes a 

synthesis method for an automatic control system in the 

state space and an algorithm for its implementation in 

MATLAB. The proposed method of system synthesis has 

advantages and eliminates the disadvantages of existing 

methods. After the software implementation of the proposed 

algorithm in the form of a subroutine, a system synthesis 

command can be formed, similar to the Ackermann, and 

placed in MATLAB. 

In practice, it is sometimes necessary to track the input 

signal, which changes at a constant rate. To perform such a 

task, the automatic control system must have two integrators 

in its structure. The article proposes a synthesis method for 

such a system. The result is a high-quality system. 

 

 
 

II. ADVANTAGES AND DISADVANTAGES OF 

EXISTING AUTOMATIC CONTROL SYSTEM 

DESIGNING METHODS IN THE STATE SPACE 

Let a continuous object be given: 
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where A is the matrix of the object with dimension nxn, B is 

the control matrix with dimension nxm, C is the output 

matrix with dimension rxn, x is the column-vector of states 

of the object with dimension nx1, u is the input column-

vector with dimension mx1. It is required to define a 

controller K that implements state feedback (Fig. 1) so that 

the synthesised system has the desired poles (desired 

eigenvalues of the system matrix): 

                        
( )1 2 .d d d dns s s=s  

Currently, it is possible to apply the Ackermann, place 

Comanches [4-8] in MATLAB, Bass-Gura method, direct 

comparison method [6, 7], controllable canonical form 

method [8], the Roppennecker method, and the modal 

method [9] to solve this problem. The matrix of the 

synthesised system is defined in this way [4-9]: 

                           
.c = −A A BK                                  (1) 

The general advantage of the above methods is the 

possibility of using them in the design of continuous and 

discrete systems. The advantages of the Ackermann method, 

the place command, the Bass-Gura method, the direct 

comparison method, the controllable canonical form 

method, and the Roppennecker method are the possibility of 

using them to design systems with complete initial poles 

(eigenvalues of the matrix A) of objects and the use of 

complete and real desired poles. However, the Ackermann 

method, Bass-Gura method, and controllable canonical form 

 

Application of MATLAB in the design of 

automatic control systems in the state space 
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Fig. 1. The block diagram of an automatic 

      control system in the state space 
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method can only be applied in SISO objects. The "place" 

command can be used to synthesize SISO and MIMO 

systems, but it cannot be applied with a multiplicity of 

desired poles exceeding the rank of the B matrix. 

Roppennecker and modal methods can be applied to design 

SISO and MIMO systems. The Roppennecker method 

cannot be applied in two cases: (1) when any pole of the 

projected object coincides with two (or more) desired poles 

of the systems; (2) when the multiplicity of the desired poles 

is greater than two. The modal method can be applied when 

any pole of the projected object coincides with any number 

of desired poles. However, this method cannot be applied in 

the case of an object with complete initial poles and 

complete desired poles of systems. The method can only 

move the maximum number of m poles. If it is necessary to 

move the pole numbers greater than m, multiple syntheses 

are required. In addition, this method may not be applied in 

the case of an object with two (or more) identical initial 

poles. 

From the above analysis of the advantages and 

disadvantages of existing methods, it is suggested to apply 

two control system design methods sequentially. First, apply 

the Roppennecker method to design a system with any n 

distinct real desired poles. Then apply the modal method to 

design a system with real desired poles. The complexity of 

the proposed approach is eliminated by using MATLAB in 

the design of the system. This approach has all the 

advantages listed above. The disadvantage of this approach 

is that it can only be applied in cases of real desired poles. 

III. THE ROPPENNECKER METHOD 

The Roppennecker method is as follows:  

For each desired sdk pole, define the vector ek as follows:  

If sdk is not an eigenvalue of matrix A, then ek is 

determined by the formula: 

                      
( )

1

k dk ks
−

= −e I A Bt                           (2) 

where tk is arbitrarily chosen so that the vectors ek are 

linearly independent; vectors tk and ek are column vectors.  

If sdk is an eigenvalue of matrix A, then the controller 

should not move this pole, select tk=0 
 
and ek is the right 

eigenvector of matrix A: 

                    
( )dk ks − =I A e 0                                    (3)

 
Define the controller K using the formula: 

        
( )( )

1

1 2 1 2... ...n n

−
= −K t t t e e e                    (4) 

Thus, the difficulty of implementing the Roppennecker 

method on a computer lies in finding one solution other than 

zero (ek≠0) of the system of equations (3). The determinant 

of the matrix and the right part (3) are zero; therefore, it is 

impossible to apply the Kramer method to solve systems of 

equations (3). It is proposed to determine the solution ek of 

the system of equations (3) by gradually reducing its 

dimension. It is assumed that the system of n equations (3) 

has the form: 
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We find the first non-zero coefficient of the system of 

equations (5), starting from the coefficient ann (we can start 

from the coefficient a11), and then the element ej is defined 

in this way: 
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On the right side of equality (6) has (n-1) components. 

Substituting (6) into (5), we obtain a system of (n-1) 

equations: 
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This operation is repeated (n-2 times) until a system of 

two equations is obtained: 

                      

0

0

xy x xk y

zy x zk y

p e p e

p e p e

+ =


+ =
                               (8) 

If at least one of the coefficients of the systems of 

equations (8) differs from zero, then the above operation can 

be performed to find ex and ey. In practice, all coefficients of 

the system of equations (8) may be zero. Solving systems of 

equations (8) on a computer is not difficult. It is necessary to 

consider all possible cases of coefficients of systems of 

equations (8) (other than zero or equal to zero). For 

example, if all the coefficients of the system of equations (8) 

are zero, then it is necessary to select any different real 

values of the elements ex and ey. The program for solving 

the system of equations (8) is expediently executed in the 

form of the hai_nghiem subroutine: 

  3 _ ( _ , , )function hai nghiem saiso pt chiso=a pp        (9) 

where pp is the matrix of the left side of the equations (8); 

saiso_pt is the accuracy of comparing two fractional 

numbers in a computer; chiso-a variable that provides a 

choice of n linearly independent vectors ti. 

From (2) and (4), we note that the value of the controller 

K depends on the value of the vector t, chosen arbitrarily. 

Therefore, there is an infinite number of controller K. 

The algorithm for implementing the Roppennecker 

method in MATLAB:   

1. Determine the dimensions n and m of the matrix B with 

the “size” command;  

2. Check the controllability of the designed system 

according to [6-9];  

3. Determine the maximum multiplicity of the desired 

poles qs; determine the maximum number of desired poles 

q1s coinciding with the poles of the initial object; 

4. If q1s<2 and qs≤2, then perform the following actions 

for each pole of the object: 
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4.1. If this pole does not coincide with the desired pole sdk, 

then select tk arbitrarily, determine ek using the formula (2); 

4.2. If this pole coincides with the desired pole sdk, then ek 

is determined in this way: 

4.2.1. Define the matrix (sdkI-A)  

4.2.2. If n=2 then apply subroutine (9) to find ek;  

4.2.3. If n>2 then perform the following actions: 

Direct move: 

4.2.3.1. Write the matrix (sdkI-A) to the first cell of the 

array f; Form a matrix of zero A1=(0 0 0 )T and write it to the 

first cell of the array f1; Form two vectors of n elements  ek=(0 

0 … 0) and e2=(1 2 … n). The elements of vector e2 are the 

number of elements of vector ek. Scan the variable n1 from 1 

to (n-2). For each value of n1, perform the following actions:  

4.2.3.2. Assign the value of cell No. 1 of the array f to the 

A2 matrix;  

Determine the size n2 of the matrix A2 with the “size” 

command;  

Starting from the element in the last row and the last 

column (or from the element in the first row and the first 

column), find the first non-zero element of the A2 matrix 

and determine the corresponding element of the ek vector by 

(6). It is assumed that the first non-zero element of the A2 

matrix is located on row number i and column number j. 

This means that element No. j of the vector ek has already 

been defined. 

Determine the coefficients of the system of equations (7) 

and assign them to the elements of the A3 matrix;  

Write the A3 matrix to cell No. (n1+1) of the array f; 

Assign the value j to the first element of the first row of 

matrix A1; elements from No. 2 to No. (n2-1) of the first row 

are zero; 

Assign the coefficient values of the right side (6) to the 

second row of matrix A1; Delete element No. j of vector e2;  

Assign the values of vector e2 to the third row of matrix 

A1; Thus, matrix A1 contains the information of element No. 

j of the vector ek. Write matrix A1 to cell number (n1+1) of 

array f1; Delete matrices A1, A2, and A3. 

After operating subparagraph 4.2.3.2 (n-2) times, we obtain 

a system of two equations (8). Arrays f and f1 have (n-1) cells. 

The cell number (n-1) of the array f is the coefficients of the 

system of equations (8). The two remaining elements of the 

vector e2 are the number of elements ex and ey. Here we finish 

scanning n1 from 1 to (n-2). 

All operations 4.2.2-4.2.3.2 are expediently performed in 

the form of a subroutine: 

 _ _ (saiso_pt,chiso,n, )k tinh vector ek=e sdki_A     (10) 

where sdki_A-matric [sdkI-A].  

Reverse move:  

4.2.3.3. Determine the values of the two elements ex and ey 

of the vector ek in (8) by applying subroutine hai_nghiem (9): 

4 _ ( _ , , { 1})hai nghiem saiso pt chiso f n= −a  
Assign the values of two elements ex and ey to the 

corresponding elements of vector ek based on elements of 

the vector e2. 

4.2.3.4. Read the cells of the f1 array from cell No. (n-1) 

to cell No. 2. For each cell, we get the A1 matrix. The first 

element of the matrix A1 is the number of the desired 

element of vector ek; each element of the second row of 

matrix A1 is the value of the coefficients of the right part (6); 

each element of the third row is the number of certain 

elements of vector ek in the right part (6). Based on the 

second and third rows of matrix A1, we determine the value 

of the corresponding element in the vector ek. Assign the 

found value to the corresponding element of vector ek. 

After finding the values of all the elements of all vectors 

ek, we define the controller K by (4). 

To obtain independent vectors ek, when forming the 

vector t in (2) and the chiso variable in (9), it is advisable to 

use the “normrnd(x,y)” command. 

IV. THE MODAL METHOD 

The modal method is as follows:  

Determine the m left eigenvectors 
1 2, ,...,T T T

mb b b
 of the 

matrix A by the formula:
 

                     
( )T T

i i − =b g I A 0                                 (11) 

Define the controller K by the formula: 

                     
( )m m m m= − −K T s g M                       (12) 

where the matrices Tm, Mm, sm, and gm are defined as 

follows: 
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where s1, s2, ..., sm are the desired poles of the system; g1, g2, 

..., gm are the eigenvalues of the matrix A. To apply 

subroutines (10) to determine the vector bi, transform (11) as: 

            
( )Ti i− =g I A b 0                (17) 

The algorithm for implementing the modal method in 

MATLAB: 

1. Determine the dimension of matrix B;  

2. Check the controllability of the designed system [6-9];  

3. Determine the vector of eigenvalues tr_rA1 of the 

matrix A; assign vector sd to vector sd1. 

4. Move the elements of the vectors tr_rA1 so that the 

elements other than the elements of the vector sd1 take the 

first places: 

Select all the elements of the vector tr_rA1 that match the 

elements of the vector sd1 to form the vector tr_rA2. 

Simultaneously exclude these elements from the vector 

tr_rA1 and the vector sd1. If the vector tr_rA1 is not empty, 
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then form the vector tr_r by connecting the vectors tr_rA1 

and tr_rA2; and if the vector tr_rA1 is empty, then go to 

point 10; 

5. For each of the first m elements of the vector tr_r, 

determine the vector bi by (17) using the subroutine (10). To 

increase the accuracy of the calculation, it is advisable to 

multiply [giI-A]T by a large factor (for example, 1050), then 

divide the resulting elements of the vector bi by this factor. 

The accuracy of the calculation significantly depends on the 

value of this multiplier and saiso_pt. 

6. If the number of elements of the vector sd1 is less than 

m, then it is necessary to supplement it with the 

corresponding elements of the vector tr_r;   

7. Determine the controller Ki by (10)-(16) using sd1 and 

tr_r and write it to cell No. i of the array p. The value of the 

controller Ki depends on the method of selecting the 

variable chiso in subroutine (10). Thus, we can get an 

infinite number of the controller Ki. 

8. Define a new matrix A using the formula (1): 

               
.i= −A A BK  

9. Repeat steps (3)-(8) until the system has all the desired 

poles (vector tr_rA1 is empty).  

10. Read all cells of the array p and determine the 

controller K by the formula: 

              

.i
i

= K K

 

V. COMBINATION OF THE ROPPENNECKER AND 

THE MODAL METHODS 

It is proposed to first apply the Roppenecker method to 

synthesize a system with any different temporal real poles, 

for example 

       ( )0,1 0,2 ... 0,1 .dr n= − − −s  

As a result, the controller Kr gets knocked out. Define a 

new matrix of the system: 

            1 .n r= −A A BK  

From matrixes An1, B, sd, synthesize the controller Km 

using the modal method; 

The desired controller K is defined as follows: 

             ( ).r m= +K K K  

Determine the final matrix of the system: 

     
.n r m= − − = −A A BK BK A BK  

All the above operations are expediently performed in the 

form of a subroutine: 

          rop _mod( , , ).d=K A B s  

Thus, we can use the command rop_mod as the command 

place in Matlab. 

Example: Let the object have matrices A and B: 

     

0,2 0 1 0,5 0,6

0,1 0 0,1 0,8 0,7

;1 0 3 4 2

1 0,3 0,7 0,6 1

0,5 0,4 0,2 0,1 0,8
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 
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1. It is assumed that this object belongs to continuous 

ones; it is required to define a controller K that implements 

state feedback so that the system has the desired poles: 

  
( )0,2601 0,2601 0,2601 0,2601 0,2601d = − − − − −s . 

2. It is assumed that this object belongs to discrete ones 

with a sampling period T0=0,1 s; it is necessary to determine 

a controller K that implements state feedback so that the 

system has the desired poles: 

             
( )0,6 0,6 0,6 0,7 0,7 .d =s  

Solution: 1. The matrix of system A has its eigenvalues: 
( )4,5939 0,7291 0,2315 0,5148 0,2315 0,5148 0,2601 .j j= − + − − −tr_rA  

Thus, sdk is an eigenvalue of matrix A. First, apply the 

Roppennecker method to determine the Kr controller, which 

implements state feedback so that the system has 

intermediate desired poles: 

   
( )0,1 0,2 0,3 0,4 0,5dr = − − − − −s  

The intermediate matrix of the system is defined in 

this way: 

                          1n r= −A A BK
 

Then, by applying the modal method in defining the Km 

controller for the An1 object, implementing state feedback so 

that the system has the desired poles:
   

( )0,2601 0,2601 0,2601 0,2601 0,2601d = − − − − −s
 

This is how we use the normrnd(x,y) command to 

determine the elements of the vector ti in (2) and ek in (3), 

so each time we call the rop_mod subroutine, we get 

different values of the controller K. One options of the 

controller K is:

         0,51411 -0,029788 0,528262 0,395402 0,15706
.

0,714609 0,208766 1,505221 1,8753 1,4017

 
=  

 
K

 
Another values of the controller K is:

   0,51407 -0,029603 0,521628 0,39065 0,152782
.

0,714621 0,208708 1,507275 1,876771 1,403025

 
=  

 
K

 
2. One values of the controller K is:

   -3,560647 -2,619262 1,705573 3,627515 1,494992
.

2,909701 1,752375 0,176024 -0,888658 0,293391

 
=  

 
K

 
Another values of the controller K is: 

  

-5,0340777 -4,086992 2,276506 5,691405 2,235311
.

3,365817 2,206726 -0,000714 -1,527557 0,064218

 
=  

 
K
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VI. TRACKING AN INPUT SIGNAL CHANGING AT A 

CONSTANT RATE 

The designed system, which does not have two 

integrators in its composition, cannot monitor the input 

signal, which changes at a constant rate. In this case, it is 

necessary to supplement the system with two integrators. 

The system's structure is detailed in Fig. 2. Now the 

system has the order (n+2). 

If we define the new state as: 

    ( )1 2 1 2 ,
T

n n nx x x x x x+ +=  

then the system has a new mathematical model: 

1
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When designing a system, it is necessary to determine the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

desired poles that determine its quality in the transient and 

steady-state modes. Our system has two integrators, so the 

steady-state velocity error is zero. The quality of the system 

in the transition process is mainly determined by the value 

of the dominant poles [3]. Therefore, it is supposed to apply 

a vector of desired poles in the form: 

                  ( )1 2 2 2s s s s=ds   

where s2-dominant pole. 

Let's define these dominant poles using the parametric 

optimization method. Let's choose the minimum 

transition time of the system as the target function. The 

algorithm for determining the desired poles will include 

the following steps: 

 

Fig. 2. The system with two integrators  

Fig. 3. The block diagram of the synthesised system in the Simulink 

 

Fig. 4. The transitional characteristics of the synthesised system 

 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 7, 2025 

 

 

52 

 

Scan pole s1 from s1b to s1f with a scan step of ds1. For 

each value s, scan poles s2 in from s2b to s2f with a scan step 

of ds2. 

For each pair of (s1, s2), apply the higher proposed 

methodology to determine the value of controller K and 

construct a transient characteristic of the system. 

If the maximum value of the transition characteristic is 

less than 1,25, determine the transition time of the system. 

Determine the pair of poles (s1, s2) and an appropriate value 

of controller that provides the minimum transition time. 

Example: An object with a mathematical model is 

specified: 

        

( )

0,3 0,8 1 0

0,3 1 0 1

1 0y

    
= +    

    
 =

x x u

x

 

It is required to synthesize a system tracking the input 

signal, which changes at a constant rate.  

Solution: 

After entering two integrators into the system, the 

matrices A, B, and C have the form: 

( )

0,3 0,8 0 0 1 0

0,3 1 0 0 0 1
; ; 1 0 0 0 .

0 0 0 1 0 0

1 0 0 0 0 0

A B C

   
   
   = = =
   
   

−   

    

After applying the previously proposed system synthesis 

technique, one value of the controller turned out to be: 

   
300,8 0,8 11250 22650

.
263,45 151 19704 39603

− − 
=  

− − 
K  

The block diagram of the synthesized system in the 

Simulink environment is shown in Fig. 3. Its transient 

characteristic is shown in Fig. 4. 

VII. CONCLUSION 

Thus, the consistent application of the Roppennecker 

method and the modal method makes it possible to design 

an automatic control system in the state space with any 

multiplicity of real desired poles. To ensure the required 

quality of the system, it is necessary to select the appropriate 

set of desired poles. For one set of desired poles, you can get 

an infinite number of K controllers. This approach can be 

applied to the design of a system of any dimension. The 

method can be applied to the synthesis of continuous and 

discrete systems. 

The proposed method of synthesizing an automatic 

control system with two integrators makes it possible to 

build a high-quality tracking system. 
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