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 Abstract—The approximated solution of wave propagation 

problem in smooth heterogeneous media by use of the iterated 
kernels method is proposed. It represents the result of iterated 
method application to the integral equation equivalent to the 
Helmholtz scalar equation. The resulting solution has a 
compact type and unites the advantages of the Born scattering 
and short-wave asymptotic methods. The way of increasing 
accuracy of the solution on the basis of addition of terms is 
shown. Their functional form is determined by the requirement 
of meeting the conditions of the Helmholtz equation solution 
and represents a compromise between the accuracy and the 
simplicity of the solution. 
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I.  INTRODUCTION 
Most of interesting to study media, are heterogeneous. 

The problem of wave propagation in a medium with 
arbitrary spatial dependence has no exact solutions and 
approximate methods have to be used. Existing approaches 
in describing a field that has passed through a heterogeneous 
medium can be divided into two main groups. These are 
methods that take into account multipath propagation (the 
Born method, for example) and methods with multiple 
interactions (the geometric optics method, the Rytov 
method, the parabolic equation method etc.) [1, 2]. These 
approaches have different applications: the first type 
efficiently describes the scattering of waves by concentrated 
objects, the second type describes the change in the radiation 
characteristics when a wave passes through a smoothly 
heterogeneous medium. In the series of articles [3-6], an 
attempt was made to create a method that combines the 
advantages of these approaches. The main idea consists of 
applying the method of iterated kernels to the integral 
equation  
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that describes the problem of wave propagation in an infinite 
heterogeneous medium in the scalar approximation. Here the 

)( 00 rE  represents the primary wave electric field strength, 
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( ) ( )( ) 00 /εεεδε −= rr  is the disturbance of the medium's 
dielectric permittivity in relation to the background value 
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=  is the Green’s function of an infinite 

homogeneous medium with the wave number k , 
rr −= 00R . The unbounded space volume integral in the 

right part represents the field scattered by heterogeneities. 
Applying the concept of resolvent [7], the solution for the 

integral equation (1) can be given by  
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where ),( 0rrΓ  denotes a resolvent, which is determined by 
the Neumann series 
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which converges in case of sufficiently small values of the 
wave number k . n+1-st iterated kernel ),( 01 rr+nW  can be 
determined by the following recurrent relation [3] 

∫ ′′′=+ rrrrrrr dWWW nn ),(),(),( 001 , 

( ) ( ) ( ) )δε(001 rrr,rr, 00 RGWW == . 
The main difficulty of such approach lies in the 

awkwardness of iterated kernels writing represented by 
multidimensional integrals of rather complicated form that 
can’t be summarized completely. Thus it is necessary either 
to be limited to a small quantity of considered kernels (the 
Born approximation, the double scattering theory [2], etc.) 
or to use simplifying approximations. 

The most natural approach consist to Decomposition of an 
arbitrary dependence )δε(r  into a complete system of basic 
functions and the subsequent exact calculation of the 
resulting integrals seems to be the most natural approach. 
Such method of calculation using the Taylor series was 
proposed in [3].  

The solution in the linear approximation given by 
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[6]. It has the form of  
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where 

( ) ( )( )rrrrrr −∇++= 00 ε
2
1)ε(1, δA . (3) 

This article discusses ways to refine this solution. 

II. THE CALCULATION OF HIGHER ORDERS TERMS 
Due to the complexity of the problem, we restrict 

ourselves to calculating the second and the third iterated 
kernels up to terms of the second order of expansion )δε(r′  
in a Taylor series 
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Applying the formulas for calculating the integrals [3], we 

get the following form of second iterated kernel 
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where the designation iks 2−=  is used, and the functions 
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describe respectively the first and second order terms of the 
Taylor expansion.  

Similarly, the third kernel is given by  
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Comparing these expressions with those calculated in [6], 
we can argue that at least the first terms of the iterated 
kernels with the terms of higher orders in expansion )(r′δε  
taken into account, will retain their form after the function 

( )0,rrA  at the formula (3) is modified: 
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where the functions ( )0,rrnα  are the sum of all terms of the 
Taylor expansion of the corresponding order. 

III. FURTHER REFINEMENT OF THE SOLUTION 
Until now, while constructing the refined solution, we 

have restricted ourselves to the first terms of the calculated 
kernels, discarding terms in the form of ( )( )2ε r∇  and higher 
order. Now we will consider all terms up to and including 
the second order. The structure of the calculated iterated 
kernels tells us to look for a solution in the form of  
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where the function ( )0,rrAG  is given by expression 
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and the functions ( )01 ,rrG  и ( )02 ,rrG  must be determined 
from meeting the conditions of the Helmholtz equation 
solution. 

Substitution into the Helmholtz equation and 
rearrangement of the terms in the order of smallness 
gives
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Therefore, to satisfy the Helmholtz equation up to second 
order terms, each of the curly brackets must become zero: 
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The selection of the function ( )0,rrA  ensures satisfaction 
of the first equation up to and including terms of at least the 
fourth order of smallness. The equation for the function 

( )01 ,rrG  is essentially the same Helmholtz equation with the 
known right-hand side and allows an approximate solution in 
the form  
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This solution is cumbersome and inconvenient to use, that 
is why we simplify it by calculating the integral 
approximately, assuming functions ( )rr ′,A  and ( )0,rr′A  are 
slowly changing, 
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( )01 ,rrG  there is an inaccuracy in satisfying the equation 
(5). Substitution the equation gives 
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Similarly, solving the equation for the function ( )02 ,rrG  
gives  
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The inaccuracy in this case is 
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Thus, the expression for the Green's function of the 
Helmholtz equation, satisfying it up to and including terms 
of the second order of smallness, has the form of 
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For reference, we give the inaccuracy in satisfying the 
Helmholtz equation with this function 
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The solution refinement process can be continued in a 
similar way.  

The question here, in fact, is the balance between the 
accuracy of the formula and the complexity of the writing 
and the cost of obtaining it. For example, adding the terms  
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to formula (4) provides accuracy up to and including terms 
of the third order. 

IV. CONCLUSION  
This article presents approximate solutions of various 

orders of accuracy to the problem of wave propagation in 
smooth heterogeneous medium, obtained using the iterated 
kernel method. The main approximation was an inaccurate 
consideration of the dependence of the value δε  under the 
integral sign on the coordinates in the process of iterated 
kernels calculation. This dependence was approximately 
modeled by several terms of the Taylor expansion. Then, 
based on the summation of the Neumann series, which was 
carried out without additional approximations, a transition 
was made from the description of multiple scattering of the 
incident field by the in homogeneities of the medium to the 
description of the change in the amplitude-phase 
characteristics of the total field, determined by the 
heterogeneous medium as a whole. We note that such a 
transformation of the scattering process into the propagation 
process was carried out with mathematical rigor, in contrast 
to most existing asymptotic methods in which the 
description of wave propagation is determined by heuristic 
considerations based only on physical concepts. 

The proposed solution has a compact form and combines 
the advantages of the Born scattering method and the 
geometric optics method, into which it passes in the extreme 
cases of a small and smooth change in the characteristics of 
a heterogeneous medium. The advantage of the proposed 
solution is also its applicability for any type of sounding 
radiation and of in homogeneities profile. 

The method for increasing the accuracy of the Green's 
function for a heterogeneous medium by adding extra terms 
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to its composition is shown. Their functional form is 
determined by the requirement of meeting the conditions of 
the Helmholtz equation solution and represents a 
compromise between the accuracy and the simplicity of the 
solution.  
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