
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 12, 2019

Some more on the equivalent transformation
of nondeterministic finite automata.

Part III. The “adding” algorithm

B. F. Melnikov

Abstract—This paper is a continuation of two previous parts.
In them, we considered some simple algorithms for combining
and removing (deleting) states of the given nondeterministic
finite automaton, as well as the reduction some problems related
to the star-height to considering automata. To do this, we used
the possible classification of the states and loops of the given
automaton.

In this part of the paper, we shall describe an algorithm
which adds some states and edges to the given nondeterministic
finite automaton. This algorithm preserves the basic properties
of automata: the languages of the given and the obtained
automata are the same, and the value of star-height for the
obtained automaton is no more than such value for the given
automaton.

This algorithm is more complicated than the ones considered
in the previous parts due to the following conditions. Here,
we consider the case, when there exists the only direction for
the paths between two considered states (we denoted them q
and qm in previous parts). I.e., the path in the direction of all
edges, or, vice versa, in the reverse direction; but not in both
directions at the same time. (Like previous parts, we consider
only such paths that do not pass through edges with smaller
numbers, which are less than the value of qm; more strictly, all
the considered vertices of such path should have the values of
ω-function defined for the “minimum” automaton less than q
has.)

The simple algorithms for combining these two states q and
qm (similar to the algorithm discussed in Part I) increase the
SH-value of the automaton under consideration. To prevent this
increase, we use the removing (deletion) instead of combining,
but, unlike Part II, we have to add some new elements (i.e.
vertices and edges) to the transition graph of the automaton
we transform.

Keywords—nondeterministic finite automata, regular lan-
guages, equivalent transformations, adding state, adding edge,
the star-height problem.

XIII. INTRODUCTION TO PART III
(ONCE MORE ABOUT THE MOTIVATION)

This paper is the continuation of [1], [2], i.e. Parts I
and II. 1 We continue the numeration of sections, equations,
definitions, propositions, theorems, tables, and figures, but
use the new numbers of references and footnotes.

As we said in [3] before, we reformulated the star-height
problem for regular languages in the following way: for the
given regular language, we have to construct the equivalent

Received October 7, 2019.
Boris F. Melnikov, Shenzhen MSU – BIT University (email: bf-melnikov

@yandex.ru).
1 In Part II, there was a misprint in the same section: it was said that

Part II is not a continuation of Part I, but of the other paper. In fact, this is
partly true, but, certainly, Part II is a continuation of Part I. We hope, that
in the current Part III, there are no reference misprints.

finite automaton having the minimum possible star-height.
After that, considering n! bijective “order” functions 2, we
construct corresponding regular expressions and choose the
one having the minimum possible star-height.

Thus, a possible solution of the star-height problem for
regular language is constructing such “minimum” automaton.
To build such an automaton, we perform some auxiliary
equivalent transformations. The description of such trans-
formations is the main subject of the all three parts of this
paper.

In this part, we shall consider the most difficult case. In
it, there is any path along the edges of transition graph of
the automaton from the previously fixed vertex to the vertex
q under consideration in exactly one direction. (I.e., either
in the direction of all edges, or, vice versa, in the reverse
direction; but not in both directions at the same time. Like
previous parts, the labels of the edges do not matter.) Before,
we denoted this previously fixed vertex qm, the designation
for it coincides with ones fixed and used in Parts I and II;
see also [4], [5]. At the same time, like previous parts, we
consider only such paths that do not pass through edges with
smaller numbers (which are less than the value of qm; more
strictly, all considered vertices of the path have less than q
values of ω-function defined for the “minimum” automaton
under consideration.)

The complication of Part III we mentioned before is
that the simple algorithms for combining these two states
(similar to the algorithms discussed in the previous parts)
increase the SH-value. To prevent this increase, we use the
removing (deletion) instead of combining, but, unlike Part II,
we have to add new elements (i.e. vertices and edges) to the
transition graph of the automaton we transform. And, adding
these elements, we must ensure that the SH-value does not
increase.

Thus, in Part III, we describe the algorithm for special
adding states. 3 This algorithm will also have the same
feature of transformations, i.e. the values of star-height for
the obtained automata will be no more than such value for the
given automaton. Like Part I (the combining case of Part I),
we shall add not only the edges, but also the states. Like
previous parts, we “improve the structure” of the automaton
under consideration; this will help to subsequently apply one

2 n is the number of the states of the “minimum” automaton.
3 In the conclusion of Part II, we called this process: “special adding

a state”. This is also true, because all states added in Part III (there are,
generally speaking, several such states) duplicate the one considered state
of the changed automaton. The text of the current part (“special adding
states”) is some more accurate.

1

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 12, 2019

of the algorithms discussed in the first two parts. But this
“improving”, like before, does not imply the “complication”
of the automaton.

Let us note in advance, that in this part of the paper hardly
any examples are possible (of the type of ones we considered
in the previous two parts). This can be explained by the fact
that the situation described in Part III is hardly possible at
all. Moreover, the author believes that a simple description
of an example with such a possibility (or the proof that this
is not possible) is the topic of a separate publication. But
to describe completeness, we perform the transformations
required to show how to transform an automaton in this
situation.

XIV. THE ADDING ALGORITHM

As we said before, we shall here consider the case, when
there exists any path along the edges of transition graph
of the automaton from the previously fixed vertex qm to
the vertex q under consideration in exactly one direction.
More strictly, all the considered vertices of such path should
have the values of ω-function defined for the “minimum”
automaton less than q has. In formulas, for each state q ∈ T̂m
(the set of states Tm for the considered state qm was defined
in Part I), we have(

Vqm(qm, q) &Vqm(q, qm)
)

or
(
Vqm(qm, q) &Vqm(q, qm)

)
.

(17)

Thus, let us consider this case.
The modified automaton will be denoted by

K = (Q ∪Q, Σ, δ ∪ δ, S ∪ S, F ∪ F),

and we shall describe new elements only (i.e., Q, δ, S, and
F) 4, i.e., elements which are added to the elements of K.

For the following description of changing ordering func-
tion5, we choose a priori some values τ (q) (for each state
q ∈ T̂m). Choosing these values, we assume that they:
• are different;
• lie in interval

(
0, min

r,t∈Q, r 6=t
|τ(r)− τ(t)|

)
.

We shall make the following transformations for each state
q ∈ T̂m. At first, let us consider the first subcase of (17),
changing there q for q′. I.e., we assume that for some q′ ∈
T̂m, we have

Vqm(qm, q
′) & Vqm(q′, qm)

(and we shall make the transformations for each such state
q′).

Firstly, we include in the set δ the following elements:{
r

a−→
δ

qm
∣∣ r a−→

δ
q′
}
. (18)

Secondly, we add in the set Q the states{
r(q

′)
∣∣ r ∈ T ′m }

, where T ′m = Tm \ {q′}.

For these states, we assume that

S ⊇
{
s(q

′)
∣∣ s ∈ S }

and F ⊇
{
f (q

′)
∣∣ f ∈ F }

4 As before, we consider transition functions as the sets of their elements.
5 For both automata, i.e., for K and K, we shall denote this functions

by τ , without subscripts etc.

(and the sets S and F contain no other elements having
superscript (q′)). And we set values of the ordering function
τ in the following way:

τ
(
r(q

′)
)

= τ(r) + τ (q
′)

for the value τ (q
′) chosen before.

Thirdly, we include in the set δ the following elements:{
r(q

′) a−→
δ

t(q
′)
∣∣ r ∈ T ′m , t ∈ T ′m ∪Qm, r a−→

δ
t
}

∪
{
qm

a−→
δ

t(q
′)
∣∣ t ∈ T ′m ∪Qm, q′ a−→

δ
t
}
.

(19)

The described process of adding edges can be demon-
strated by Fig. 11 below. For this figure, let us make the
following comments.
• When there is an opportunity, we tried to place the states

(vertices) such that if τ(r) < τ(t) then r lies higher
than t. States (q′ and q′′) having the same values of
both functions ϕinK and ϕout as qm has, are shown by
shaded circles. The path passes q′, then qm, and then
q′′, shown by the firm line, is contained in automaton
K. It symbolizes that we cannot have two the following
paths which passes the vertices of Tm only: a path from
qm to a vertex having the same values of state-marking
functions ϕinK and ϕout and a back one; we can have
only one of two such paths.

• The paths shown by chain lines are also contained in
automaton K. These paths are kept in automaton K, and
for each of them (let it be ν), we also have a new path
of automaton K (let it be ν). It is important to remark,
that their words (i.e., the labels of these pairs of paths
ν and ν) are different, but ν (considered together with
a needed path consisting of vertices of Qm as a loop)
includes the long loops corresponding to the loops of
the basis automaton, which ν has. Furthermore, for the
pair (A,X) (where state A

X corresponds to q′ in ν), we
have the only entry of corresponding vertex for ν.

• Thus, the two new parts of such new path (ν) are shown
by the dotted lines and marked on Fig. 11 by the word
“new”. Its first part (from vertex r) is an edge and is
defined by (18); and its second part is defined by (19).

For another subcase, let us describe transformations
briefly; they are similar. Thus, in the second subcase of (17),
we change q for q′′, assuming that for some q′′ ∈ T̂m, we
have

Vqm(qm, q
′′) & Vqm(q′′, qm)

(and we also shall make the transformations for each such
state q′′). Firstly, we include in the set δ the following
elements:

{
qm

a−→
δ

t
∣∣ q′′ a−→

δ
t
}

. Secondly, we include in

the set Q the states {
r(q

′′)
∣∣ r ∈ T ′′m }

,

where

T ′′m = Tm \ {q′′} and τ
(
r(q

′′)
)

= τ(r) + τ (q
′′),

adding also

S ⊇
{
s(q

′′)
∣∣ s ∈ S }

and F ⊇
{
f (q

′′)
∣∣ f ∈ F }

.

Thirdly, we include in the set δ the following elements:{
r(q

′′) a−→
δ

t(q
′′)

∣∣ r ∈ T ′′m ∪Qm , t ∈ T ′′m, r a−→
δ
t
}
∪{

t(q
′′) a−→

δ
qm

∣∣ t ∈ T ′′m ∪Qm, t a−→
δ
q′′

}
.

2

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 12, 2019

Figure 11.

Proposition 11: If the case of (17) holds, then:
• L(K) = L(K);
• SH(K, τ) = SH(K, τ).

Proof. K can be obtained from K by removing some
states and edges, then K is a quasi-subset of K (see Part I,
Definition 5).

Vice versa, each of added edge satisfies conditions of
Proposition 8 (see Part II), then also by Definition 5, au-
tomaton K is a quasi-subset of K. Then by Proposition 1
(see Part I), we obtain equation L(K) = L(K).

Owing to the process of adding edges, if two vertices have
different superscripts, then each path from the first in the
second of them has to pass vertices of Qm. And each vertex
of Qm have the value of the ordering function τ which is
less than such value of each vertex having superscript; then
changing automaton, we increase value of SH(q) neither for
q ∈ Qm nor for q /∈ Qm. (Because for the vertices having
superscripts, the value of their ordering function is the same
as the one of corresponding vertices not having superscripts.)
Therefore, we do not increase value of SH for the automaton
in the process of considered transformations. �

XV. CONCLUSION

Thus, after considering the case of (17), we can claim
that state qm is also an important one (for important states,
see Part I, Definition 3). In fact, we already have informally

explained this statement before, describing added states r(q
′)

and corresponding edges. I.e., we have formulated there, why
we can choose the expected long loop having the only state
(i.e., qm), such that:

• it has values of state-marking functions ϕinK (qm) and
ϕoutK (qm); 6

• it corresponds to at least 1 state of the basis automaton,
which was not included in set Ψ̂m before.

Therefore, we can repeat the modifications (i.e., consider one
of three possible cases once again) for new number m which
is 1 more that previous value.

Considering all the cases of Parts I–III, we increase the
number of elements in each of the sub-cases considered in
them for the sets Ψ̂(qi), at least for one of the possible i.
However, only a finite number of such increases are possible.
Therefore, the number of executions of the case of (17) is
also limited.

After the transformations we have described, all the states
of automaton K are important. Therefore we can in advance
limit the number of states that have to be considered to obtain
the automaton, which has no states with the same values of
both state-marking functions.

A very rough upper bound on the number of states of the
transformed automaton can be obtained as follows. In [4],

6 The obtained automaton is equivalent to the given one, then we can use
such notation.

3

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 7, no. 12, 2019

[6], [7], [8], we considered grids (blocks) and pseudo-grids;
see also [9].

Let n = min { |Qπ|, |Qρ| } (i.e., the minimum of the
numbers of states of the 2 considered canonical automata for
the given language). Let M(n) be the n-th Dedekind number,
see [10], [11] etc. Then by [9], the number of grids (which
is no more than the number of states of the corresponding
universal automaton, or automaton COM(L)) can be limited
by the value M(n).

Each grid can form no more than (2n− 1)2 pseudo-grids;
the total number of the pseudo-grids can be limited by the
value 22n · M(n). Each pseudo-grid can include no more
than n2 elements 7; each such element corresponds to a state
of automaton BA(L).

Consider pairs, where each pair consists of a pseudo-
grid and an corresponding state of BA(L); for corresponding
states, see [4]. Then the number of pairs, which are necessary
for the consideration of important states, is no more than

22n ·M(n) · n2.

REFERENCES

[1] Melnikov B. Some more on the equivalent transformation of nondeter-
ministic nite automata. Part I. Notation and the “combining” algorithm
// International Journal of Open Information Technologies. 2019, vol. 7,
no. 4, pp. 1–5.

[2] Melnikov B. Some more on the equivalent transformation of nondeter-
ministic nite automata. Part II. The “deleting” algorithm // International
Journal of Open Information Technologies. 2019, vol. 7, no. 9, pp. 1–6.

[3] Melnikov B. The star-height of a finite automaton and some related
questions // International Journal of Open Information Technologies.
2018, vol. 6, no. 7, pp. 1–5.

7 In fact, no more than n2/4 elements.

[4] Melnikov B., Melnikova A. An approach to the classification of the
loops of finite automata. Part I: Long corresponding loops // Interna-
tional Journal of Open Information Technologies. 2018, vol. 6, no. 9,
pp. 9–14.

[5] Melnikov B., Melnikova A. An approach to the classification of the
loops of finite automata. Part II: The classification of the states based
on the loops // International Journal of Open Information Technologies.
2018, vol. 6, no. 11, pp. 1–6.

[6] Melnikov B., Sciarini-Guryanova N. Possible edges of a finite automa-
ton defining a given regular language // The Korean Journal of Com-
putational and Applied Mathematics (Journal of Applied Mathematics
and Computing). 2002, vol. 9, no. 2, pp. 475–485.

[7] Melnikov B. The complete finite automaton // International Journal of
Open Information Technologies. 2017, vol. 5, no. 10, pp. 9–17.

[8] Melnikov B. Regular languages and nondeterministic finite automata. –
Russian State Social University Ed., 2018, 180 p. (in Russian)

[9] Lombardy S., Sakarovitch J. The universal automaton // Logic and
Automata. Amsterdam University Press, 2008, pp. 457–504.

[10] Dedekind R. Über Zerlegungen von Zahlen durch ihre größten gemein-
samen Teiler // Gesammelte Werke 2. Braunschweig, 1897, pp. 103–
148. (in German)

[11] Korshunov A. On the number of monotonous Boolean function // The
Problems of Cybernetics. 1981, vol. 38, pp. 5–108. (in Russian)

Boris Feliksovich MELNIKOV,
Professor of Shenzhen MSU – BIT University, China
(http://szmsubit.ru/),
Professor of Russian State Social University
(http://www.rgsu.net/),
email: bf-melnikov@yandex.ru,
mathnet.ru: personid=27967,
elibrary.ru: authorid=15715,
scopus.com: authorId=55954040300,
ORCID: orcidID=0000-0002-6765-6800.

4

	Introduction to Part III (Once more about the motivation)
	The adding algorithm
	Conclusion
	References

