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Abstract — The article introduces powerful common tool for 
the signals analysis – basics of a spectral analysis.  

It focuses on decomposition into complex sine waves 
(harmonic sinusoids) called the Fourier transform. 

Based on qualitative review of the natural phenomenon of 
visible light (that is the electromagnetic field oscillation in a 
working range of the eyes) decomposition into a clear colors in 
a prism, known as Newton’s experiments, corresponding 
quantitative procedure of Fourier transform is announced. It 
translates the arbitrary signals specified in time (usually real, 
but not necessarily) into a set of complex sine waves in a 
mathematical form. 

The reversibility of the transformation, similar to the second 
prism that collects light rays back into a single white beam, is 
briefly shown. For this purpose, one of the key mathematical 
constructions of the theory of signals (the Dirac delta function 
and its properties) is considered more detailed. 

The phenomenon of negative frequencies is also discussed 
(which are not a fiction, but are characterized by standard 
propagating complex sinusoids twisted in different directions). 
It is shown that real physical signals have an excess in a 
spectrum (negative frequencies correspond to slightly modified 
positive ones), and they can be replaced with corresponding 
analytical ones. 

All arguments are presented at a descriptive level and in 
mathematical form, using visualizations and in the form of 
MatLab scripts. This gives a more complete picture of the 
subject matter, allowing looking at that from various points of 
view. 

Keywords — Fourier transform; spectrum; complex signals; 
complex sine waves; delta-function; negative frequencies; 
analytical representation; MatLab; 

I. INTRODUCTION 
The article continues the introduction to a signal 

processing tasks, actual for radio astronomy measurements 
and satellite data collection. The works are focused on 
applications that could be used in the “Ventspils 
International Radio Astronomy Center” of the Ventspils 
University of Applied Sciences. 

The first paper [1] in series was dedicated to the basic 
concepts: complex numbers and corresponding complex 
signals as a change of these numbers, with a special focus 
on complex sine wave signal. 

Based on these concepts this work offers representation of 
any appropriate signal as a set of complex sine waves (that 
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are convenient for processing and analytical analysis) in a 
frequency area, known as Fourier transform. 

The rest of the paper is the following. In Section 2, 
principal and natural and best-known example of signal 
decomposition is given (passage of light through a prism). 
Section 3 suggests mathematical description of this 
procedure and Section 4 studies some proof details of the 
procedure, discussing the Dirac delta function (that will be 
used also in following works in a series). In Section 4 there 
are some reflections about negative frequencies of a 
spectrum and Section 5 shows redundancy of these 
frequencies for a real signals and a way to reduce it using 
corresponding analytical signal. All the Matlab codes (used 
as the examples and produced illustration figures to all 
parts) are collected in the Appendix.  

II. SIGNAL AS A SET OF HARMONICS 
It’s a well-known phenomenon in physics that a sunlight 

passing through a suitable prism split into different visible 
color beams. More importantly, the second reversed passage 
through the prism collects them in white light again. Newton 
showed these processes in his experiments, but he analyzed 
these phenomena qualitatively [2]. 

 
Fig 1. Decomposition of sunlight into the spectral components 

using the prism [3]. 

Clear colors are sine waves of the electromagnetic field, 
i.e. light coming out of the Sun during the processes 
occurring in it. Then they are distorted in atmosphere (each 
color with his own way) and are perceived by the eye in 
“working range” about from 380-400 nm (frequency 790-
750 THz) to 760-780 nm (frequency 395-385 THz), also 
each with its own sensitivity by different specialized cells. 
But in general in this range all components are roughly at 
the same level. 
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Fig 2. Solar spectrum at the top of the atmosphere and at the 

surface, for a solar zenith angle of 60̊ in a clear atmosphere. 
Absorption and scattering regions are indicated [4]. Visible light is 
from 0.38 to 0.7 μm that corresponds to the most active part of the 

Sun spectrum. 

Similarly, as in a prism, the dispersion (dependence of the 
refraction on the frequency of the component of the field 
oscillation) leads to the deviation at their own angle for each 
color (corresponding to a specific frequency), actually 
visualizing the following general principle: the original 
signal can be divided and be presented as a sum of harmonic 
(sine) components, and in this sense signal consist of them. 

 
Fig 3. Example result of summing N=10000 single-amplitude 

sine waves with uniform distributed random frequencies in range 
0..2000π and all possible phases. Result is almost roughly same 

level for all components and very noise-like fast changing signal. 
See Matlab A code in Appendix. 

In telecommunications, the signal also is a change in the 
propagating electromagnetic field waves with a complex 
form, which determines the information — the numerical 
data we want to transmit. Therefore, an approach with 
decomposition into sinusoidal components is also applicable 
to it. 

III. FOURIER TRANSFORM 
Quantitatively, i.e. mathematically, the decomposition is 

written in the form of a Fourier transform [5], and not only 

for light or electromagnetic signal, but also for an abstract 
function of time (or even another parameter) – the signal in 
general. This set of harmonic is called spectrum of the 
signal. 

For the signal 𝑠(𝑡) which could be integrated on the 
whole time line (it is correct, for example for all real 
continuous signals) Fourier transform is: 

ℱ(𝑠) = 𝑆(𝜔) =
1

√2𝜋
� 𝑠(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

=
1

√2𝜋
� 𝑠(𝑡)
∞

−∞
× [cos(𝜔𝑡) − 𝑗 sin(𝜔𝑡)]𝑑𝑡 

This function takes only frequency depending complex 
values. That is the spectrum is a set of complex sine waves, 
and the values of spectrum determine the amplitude and 
initial phase of these waves. 

Initial signal 𝑠(𝑡) could be received back from the 
spectrum using inverse Fourier transform (it shows how to 
assemble back signal from complex sine waves): 

ℱ−1(𝑆) = 𝑠(𝑡) =
1

√2𝜋
� 𝑆(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞

=
1

√2𝜋
� 𝑆(𝜔)(cos(𝜔𝑡) + 𝑗 sin(𝜔𝑡))𝑑𝜔
∞

−∞

 

Note: Multipliers before integrals may be different, but 
their multiplication must be equals to  1

2𝜋
. 

Another important remark is that Fourier transform (and 
inverse Fourier transform) is correct not only to a real 
signals, but for appropriate complex signals also. 

The process of restoring the signal follows from 
definition of inverse transform and properties of a specific 
abstraction – delta-function that will be discussed further: 

ℱ−1(ℱ(𝑠)) =
1

√2𝜋
� 𝑆(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞

=
1

2𝜋
� � � 𝑠(𝜏)𝑒−𝑗𝜔𝜏𝑑𝜏

∞

𝜏=−∞

� 𝑒𝑗𝜔𝑡𝑑𝜔
∞

𝜔=−∞

=
1

2𝜋
� � � 𝑠(𝜏)𝑒𝑗𝜔(𝑡−𝜏)𝑑𝜏

∞

𝜏=−∞

�𝑑𝜔
∞

𝜔=−∞

=
1

2𝜋
� � � 𝑠(𝜏)𝑒𝑗𝜔(𝑡−𝜏)𝑑𝜔

∞

𝜔=−∞

�𝑑𝜏
∞

𝜏=−∞

= � 𝑠(𝜏)

⎝

⎜
⎛ 1

2𝜋
� 𝑒𝑗𝜔(𝑡−𝜏)𝑑𝜔
∞

𝜔=−∞�������������
𝛿(𝑡−𝜏) ⎠

⎟
⎞
𝑑𝜏

∞

𝜏=−∞

= � 𝑠(𝜏) 𝛿(𝑡 − 𝜏)�����
𝛿(𝑥)=𝛿(−𝑥)

𝑑𝜏
∞

𝜏=−∞

= � 𝑠(𝜏)𝛿(𝜏 − 𝑡)𝑑𝜏
∞

𝜏=−∞�������������
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔

= 𝑠(𝑡) 

In a philosophical sense, this inverse transformation is 
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analogous to Newton’s second prism, which gathers all the 
“clear” sinusoidal components back into a single signal. 

 
 

Fig. 4. Fourier transform example for the signal s(t) = 
rectangular(0, 1, t). See Matlab B code in Appendix. 

IV. DIRAC DELTA-FUNCTION 
The key point in signal restoring using inverse Fourier 

transform is using the property of delta-function, suggested 
by the physicist Paul Dirac [6]. This function also is used to 
build the theoretical basis of discrete signal processing 
theory, and therefore is often is referred to as a sampling 
function. 

Dirac delta function (δ-function) is a generalized function. 
Frivolous it could be presented like a infinite high and zero-
thickness point: 

𝛿(𝑥) = �∞, 𝑥 = 0
0, 𝑥 ≠ 0 ,  

� 𝛿(𝑥)𝑑𝑥
∞

−∞

= 1 

More exactly delta function is defined as a limit of 
functions sequence that provides indicated properties 
(height, thickness, area): 

𝛿(𝑥) = lim
𝜀→0

𝑓(𝑡, 𝜀) = �∞, 𝑥 = 0
0, 𝑥 ≠ 0  

lim
𝜀→0

� 𝑓(𝑡, 𝜀)
∞

−∞

𝑑𝑡 = 1 

So, the function can be represented as infinitely narrow 
and infinitely high rectangle (or any other signal – that’s 
important), whose area is finite and equals to 1. In a sense, 
delta function is a set of interchangeable sets of all sorts of 
suitable signal sequences. 

For example function sequence 𝑓(𝑛, 𝑥) = sin𝑛𝑥
𝜋𝑥

  (area 
under that is always 1) limit is delta-function could be 
visualized using Matlab. 

 
Fig. 5. Function 𝑓(𝑛, 𝑥) = 𝑠𝑖𝑛 𝑛𝑥

𝜋𝑥
 iterations (n = 2, 4, 8, 16, 32, 

64). Form of a curve approaches to a delta-function. See Matlab C 
code in Appendix. 

A. Important example of delta-function realization 
For example, following form was used for Fourier’s 

transform reversible proof: 

𝛿(𝑡) =
1

2𝜋
� 𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞

= 𝑓(𝑡) 

Exploring specified function we could try to modify it the 
way to represent it as a limit of integral sequence, which 
could be found exactly [7]. 

Define the function: 

𝐼(𝜀) = � 𝑒𝑗𝜔𝑡 × 𝑒−
𝜀𝜔2

2 𝑑𝜔
∞

−∞

 

Obviously it tends to 𝑓(𝑡) as a limit: 

𝑓(𝑡) = lim
𝜀→0

𝐼(𝑡, 𝜀) = lim
𝜀→0

� 𝑒𝑗𝜔𝑡 × 𝑒−
𝜀𝜔2

2 𝑑𝜔
∞

−∞

= � 𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞

 

Let’s do some mathematical tricks. 
Modifying exponent rate of 𝐼(𝜀): 

𝑗𝜔𝑡 −
𝜀𝜔2

2
= −

𝜀
2
�𝜔2 − 2

𝑗𝑡
𝜀
𝜔�

=
−𝜀
2

⎝

⎜
⎛
𝜔2 − 2

𝑗𝑡
𝜀
𝜔 + �

𝑗𝑡
𝜀
�
2

�������������
�𝜔−𝑗𝑡𝜀 �

2

− �
𝑗𝑡
𝜀
�
2

⎠

⎟
⎞

= −
𝜀
2
�𝜔 −

𝑗𝑡
𝜀
�
2

−
𝑡2

2𝜀
 

So, in respect that classical exponential integral: 

� 𝑒−𝑎𝑥2𝑑𝑥
∞

−∞

= �𝜋 𝑎⁄  

get another representation of I: 
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𝐼(𝑡, 𝜀) = � 𝑒−
𝜀
2�𝜔−

𝑗𝑡
𝜀 �

2

× 𝑒−
𝑡2
2𝜀𝑑𝜔

∞

−∞

= 𝑒−
𝑡2
2𝜀 � 𝑒−

𝜀
2�𝜔−

𝑗𝑡
𝜀 �

2

𝑑𝜔
∞

−∞

=

⎩
⎪
⎨

⎪
⎧
𝑣 = �

𝜀
2
�𝜔 −

𝑗𝑡
𝜀
�

𝑑𝜔 = �2
𝜀
𝑑𝑣

⎭
⎪
⎬

⎪
⎫

= �2
𝜀
𝑒−

𝑡2
2𝜀 � 𝑒−𝑣2𝑑𝑣

∞

−∞

= �2𝜋
𝜀
𝑒−

𝑡2
2𝜀  

When 𝜀 → 0 this function tends to 2𝜋𝛿(𝑡): 

1. lim𝜀→0 𝐼(0, 𝜀) = lim𝜀→∞ �
2𝜋
𝜀

= ∞ 

2. lim𝜀→0,
𝑡≠0

𝐼(𝑡, 𝜀) = 0 

3. lim𝜀→0 ∫ 𝐼(𝑡, 𝜀)𝑑𝑡∞
−∞ = lim𝜀→0 �

2𝜋
𝜀

× �
𝜋

1
2𝜀�

= 2𝜋 

As a limit of lim𝜀→0 𝐼(𝑡, 𝜀): 
𝑓(𝑡)
2𝜋

=
1

2𝜋
� 𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞

= 𝛿(𝑡) 

So, the initial assumption of delta-function representation 
form permissibility was correct and that was really delta-
function in restoring the signal in inverse Fourier transform. 
But what was the property of delta-function used then? 

 

B. Sampling property of delta-function 
The key property of delta-function is sampling or 

filtering: 

� 𝑓(𝑥)𝛿(𝑥 − 𝑥0)𝑑𝑥
∞

−∞

= 𝑓(𝑥0) 

Because integral expression is equals to 0 if 𝑥 ≠ 𝑥0, so 
for any 𝜀 > 0: 

𝐼(𝑥) = � 𝑓(𝑥)𝛿(𝑥 − 𝑥0)𝑑𝑥
∞

−∞

= � 𝑓(𝑥)𝛿(𝑥 − 𝑥0)𝑑𝑥

𝑥0+𝜀

𝑥0−𝜀

 

Generalized mean theorem (Cauchy’s theoreme) states for 
integrable 𝑓(𝑥) and𝑔(𝑥) (in our case 𝑔(𝑥) = 𝛿(𝑥)) and 
continuous 𝑓(𝑥): 

� 𝑓(𝑥)𝛿(𝑥 − 𝑥0)𝑑𝑥

𝑥0+𝜀

𝑥0−𝜀

= 𝑓(𝜃) � 𝛿(𝑥 − 𝑥0)𝑑𝑥

𝑥0+𝜀

𝑥0−𝜀�������������
=1

=  𝑓(𝜃),𝑤ℎ𝑒𝑟𝑒 𝜃𝜖[𝑥0 − 𝜀; 𝑥0 + 𝜀] 
So limit value of 𝐼(𝑥)is: 

lim
𝜀→0

𝐼(𝑥) = 𝑓(𝑥0) 
Finally it proofs that inverse Fourier transform allows to 

restore initial signal from the spectrum, that indicates the 
parameters of its sine waves components. 

 
 
 

V. NEGATIVE FREQUENCIES 
In spectrum according to Fourier transform, the 

frequencies could be positive either negative: we should 
take into account all of them to restore the signal. 

Negative frequency value is not something “virtual” or 
“imaginary”: it only informs that full phase of a signal 
decreases in time (not increases) with speed |𝜔| > 0. It’s 
not even very important: increasing angle/phase direction is 
arbitrary. For example, we could accept clockwise rotating 
as the increasing direction and counter-clockwise rotating as 
the decreasing or vice versa if needed. 

Mathematical explanation is almost obviously: if 𝜔 =
𝑑𝜑(𝑡)
𝑑𝑡

< 0, that means 𝑑𝜑(𝑡) = 𝜔𝑑𝑡 < 0 while 𝑑𝑡 > 0 (time 
moving forward). Therefore, when the time for the negative 
frequency increases as usual, the phase will decrease. 

Essential is that fact that in spectrum both complex sine 
waves with phase increasing (positive frequency) and phase 
decreasing (negative frequency) always exist. 

 
Fig. 6. Complex sine waves with positive frequency 𝑧+(𝑡) =

𝑒𝑗
𝜋
8 × 𝑒𝑗𝜔𝑡 and negative frequency 𝑧−(𝑡) = 𝑒𝑗

𝜋
8 × 𝑒−𝑗𝜔𝑡 (𝜔 = 2𝜋) 

are left-handed and right-handed spirals respectively. See Matlab 
D code in Appendix. 

VI. ANALYTICAL SIGNAL 
Fourier transform allows find a spectrum not only for real 

signals, but also for complex ones. 
But for the real (not complex) signal 𝑠(𝑡) spectrum is 

superfluous: 

𝑆(−𝜔) =
1

√2𝜋
� 𝑠(𝑡)𝑒−𝑗(−𝜔)𝑡𝑑𝑡
∞

−∞

=
1

√2𝜋
� 𝑠(𝑡)
∞

∞
× (cos(𝜔𝑡) + 𝑗 sin(𝜔𝑡))𝑑𝑡 =
= 𝑅𝑒 𝑆(𝜔) − 𝐼𝑚 𝑆(𝜔) = 𝑆∗(𝜔) 

That means: the part of spectrum of a real signal with 
negative frequencies is exactly the same as complex 
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conjugate for positive frequencies and have no new 
information. When we sum them in reverse Fourier 
transform, these parts will destroy the opposite imaginary 
parts of each other so that only the real part remains – the 
result will be the real signal as expected. 

Could we ignore this redundant information given the 
knowledge that the signal is real? 

The signal, that have the same information as initial real 
(𝑡) , could be calculated using only positive frequencies: 

𝜎(𝑡) =
1

√2𝜋
� 𝑆(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

0

 

Complex conjugation of 𝜎(𝑡) corresponding to a signal 
with only negative frequencies: 

𝜎∗(𝑡) =
1

√2𝜋
� 𝑆∗(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

0

=
1

√2𝜋
� 𝑆(−𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

0

=

⎩
⎨

⎧𝛼 = −𝜔
𝜏 = −𝑡

⇒
dω = −dα
ωt = ατ
∞ → −∞

0 → 0 ⎭
⎬

⎫
=

= −
1

√2𝜋
� 𝑆(𝛼)𝑒𝑗𝛼𝜏𝑑𝛼
∞

0

=
1

√2𝜋
�𝑆(𝛼)𝑒𝑗𝛼𝜏𝑑𝛼
0

−∞

 

That means 𝑠(𝑡): 

𝑠(𝑡) =
1

√2𝜋
� 𝑆(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞

= 𝜎(𝑡) + 𝜎∗(𝑡)

= 𝑅𝑒 𝜎(𝑡) + 𝑗 × 𝐼𝑚 𝜎(𝑡) + 𝑅𝑒 𝜎∗(𝑡) +  𝑗
× 𝐼𝑚 𝜎∗(𝑡)
= 𝑅𝑒 𝜎(𝑡) +  𝑗 × 𝐼𝑚 𝜎(𝑡) + 𝑅𝑒 𝜎(𝑡) −  𝑗
× 𝐼𝑚 𝜎(𝑡) = 2 × 𝑅𝑒 𝜎(𝑡) 

is a real part of 𝑧(𝑡) with half complex amplitudes only 
positive frequencies in spectrum, 𝑠(𝑡) = 𝑅𝑒 𝑧(𝑡), where: 

𝑧(𝑡) =
𝜎(𝑡)

2
=

1
√2𝜋

�
𝑆(𝜔)

2
𝑒𝑗𝜔𝑡𝑑𝜔

∞

0
 

In other words, we use 𝑧(𝑡) instead of 𝑠(𝑡) and always 
could return to initial real 𝑠(𝑡) getting the real part of it. 
This function is called analytical representation of a real-
valued function facilitates many mathematical 
manipulations. 

Note: more exactly for frequency 𝜔 = 0 complex 
amplitude value is 𝑍(0) = 𝑆(0)

4
, not 𝑆(0)

2
 (because it is 

included in Z and Z* at the same time):  

𝑍(𝜔) ≝

⎩
⎪
⎨

⎪
⎧
𝑆(𝜔)

2
,𝜔 > 0

𝑆(𝜔)
4

,𝜔 = 0
0,𝜔 < 0

 

Can be shown that 𝑧(𝑡) = 𝑠(𝑡) + 𝑗 � 1
𝜋𝑡
∗ 𝑠(𝑡)�, where * is 

the symbol of convolution: 

(𝑓 ∗ 𝑔)(𝜏) ≝ � 𝑓(𝑡)𝑔(𝜏 − 𝑡)𝑑𝑡
∞

−∞

 

For example, analytical representation for sine wave 
𝑠(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑0) will be 𝑧(𝑡) = 𝐴𝑒𝑗(𝜔𝑡+𝜑0) = 𝐴 ×

𝑒𝑗𝜑0 × 𝑒𝑗𝜔𝑡 = 𝑍 × 𝑒𝑗𝜔𝑡, what corresponds to Euler’s 
formula and previous conclusions. 

For another example for rectangular pulse signal 𝑠(𝑡) =

𝑟𝑒𝑐𝑡(𝑎, 𝑏, 𝑡) = �1, 𝑎 ≤ 𝑡 ≤ 𝑏
0, 𝑒𝑙𝑠𝑒 : 

𝑧(𝑡) = 𝑠(𝑡) + 𝑗 �
1
𝜋𝑡
∗ 𝑠(𝑡)� = 𝑠(𝑡) +

𝑗
𝜋
� 𝑠(𝜏)

1
(𝑡 − 𝜏)𝑑𝜏

∞

−∞

= 𝑠(𝑡) +
𝑗
𝜋
�

𝑑𝜏
(𝑡 − 𝜏)

𝑏

𝑎

= 𝑠(𝑡) +
𝑗
𝜋

ln ��
𝑎 − 𝑡
𝑏 − 𝑡

�� 

So, analytical representation is not the same as the signal, 
but we could easily restore initial real signal from it with an 
advantage of only positive frequencies without redundancy. 
For that we could get real part of signal 𝑧(𝑡), or reconstruct 

𝑆(𝜔) spectrum (with the rule: 𝑆(𝑤) = � 𝑍(𝜔),𝜔 ≥ 0
𝑍∗(−𝜔),𝜔 < 0) 

and then find 𝑠(𝑡) from 𝑆(𝜔). 
Or in other words, analytical signal is a way to turn real 

signal to a complex one without redundancy. 
 

 
 

Fig. 7. Real signal (gray thin) and corresponding analytical 
(black thick) with real, imaginary, polar projections. See Matlab E 

code in Appendix. 

VII. OTHER SPECTRUM TRANSFORMS 
Fourier transform is not the only one way to obtain the 

spectrum of a signal. 
Different generalizations and alternatives, that extend the 

applicability of the method are also available, for example 
Fourier–Stieltjes transform (for multiple-dimensioned 
signals), locally compact abelian group (used other forms of 
spectrum components signals), Gelfand transform, wavelets 
and so on. 

Also there are multiple analogous integral transforms, that 
are more convenient for specific cases, for example, Hartley 
transform (that transforms real-valued functions to real-
valued functions), Laplace transform (that used complex 
sine waves with changing amplitudes), Mellin transform 
(that used not the “e” as a base of transform core) and many 
others. 

But the Fourier transform is the most popular one not 
only because was presented historically first but also 
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because it’s quite simple and close to naturally (and so, easy 
to understand), direct and reverse procedure are very 
similar, signal convolution correspond to spectrum 
multiplication (and wise versa), basic signals (sine waves) 
moves to basic signals (sine waves) and many other 
convenient properties. 

That’s why this classical Fourier spectrum is most 
popular and is used as a “default” spectrum. 

VIII. CONCLUSION 
The basic concept tool of spectrum representation as a 

part of signal processing analysis was discussed, namely, the 
complex mathematical procedures, details and their meaning 
in general. 

 
In the following parts in series some technologies based 

on spectrum analysis are planned to discuss in detail: 
information (digital) signal, modulations, spectrum 
modifications (like Direct Sequence Spread Spectrum, 
Frequency Hopping, Time Hopping, Chirp Spread), etc. 

APPENDIX 

A. Matlab code: sine wave summation (see Figure 3) 
%% Sine summations 
N = 10000;             % number of waves 
t0 = 0;                % start plotting time 
t1 = 5;                % end plotting time 
w0 = 0;                % min frequency 
w1 = 2*pi*1000;        % max frequency, 1KHz 
  
accuracy = 1000;                         
  
%% Processing 
s = @(t, w, p) sin(w*t+p);  % sine wave function 
o = @(t) zeros(size(t));    % zero-vector 
  
dw = w1-w0; 
t = linspace(t0, t1, accuracy ); % t in [t0..t1] 
spectrum = zeros(1, accuracy); 
  
s_sum = o(t); 
for i = 1:N                  % sine waves cycle 
% uniformly distributed random in range [w0..w1] 
    w = w0+dw*rand();       
% uniformly distributed random in range [0..2 pi] 
    p = 2*pi*rand();                
    wi = 1+round((w-w0)/dw*(accuracy-1)); 
    spectrum(wi) = spectrum(wi)+exp(j*p); 
    signal = s(t, w, p); 
    s_sum = s_sum + signal; 
end 
  
%% Result signal 
subplot(2,1,1); 
plot(t, s_sum); 
title('Result signal'); 
xlabel('Time, t'); 
ylabel('Value, s(t)'); 
  
%% Components amplitude summation with phases 
subplot(2,1,2); hold on; 
title('Spectrum amplitudes'); 
xlabel('Frequency, w'); 
ylabel('Abs S(w)'); 
set(gca,'XTick', [1; accuracy]); 

set(gca,'XTickLabel', ['w_0'; 'w_1']); 
  
plot(abs(spectrum)); 

B. Matlab code: rectangle signal spectrum (see Fig. 4) 
figure('units', 'normalized', 'outerposition', [0 
0 0.5 1]); 
  
%% Parameters of rectangle function 
a = 0;                     % start time                          
b = 1;                     % end time 
  
N_counts = 1000;           % accuracy 
scale=2;                   % plot scaling 
  
w_range = linspace(-50, 50, N_counts); 
t_range = linspace(a-1, a+b*3, N_counts); 
  
syms t;                    % t - symolic variable 
% f - symbolic rectangular function of t 
f = rectangularPulse(a, b, t);       
  
%% Processing 
o = @(t) zeros(size(t));   % zero-vector 
e = @(t) ones(size(t));    % one-vector 
  
% F = symbolic expression, Fourier function  
F = fourier(f);            
  
% Evaluate symbolics 
for i=1:length(w_range);   % spectrum 
    w=w_range(i); 
    S(i)=eval(F); 
end 
Re = real(S); 
Im = imag(S); 
  
for i=1:length(t_range);     % function 
    t=t_range(i); 
    s(i)=eval(f); 
end 
  
  
%% Display results function 
subplot(2,1,1); grid on; hold on; 
xlim([a-1 a+b*3]); ylim([-scale scale]); 
plot(t_range, s); 
  
xlabel('Time, t'); ylabel('z(t)'); 
title(['s(t) = ' char(f)]);  % convert to string 
  
%% Display spectrum results 
subplot(2,1,2); 
xlim([-50 55]); 
ylim([-scale scale]); 
zlim([-scale scale]); 
grid on; hold on; view(-20, 40); 
 
% S(w) 
plot3(w_range, Re, Im, 'LineWidth', 3, 'Color', 
'k');    
 
% Re S(w) projection 
plot3(w_range, Re, -scale*e(w_range), 'Color', 
'r');        
 
% Im S(w) projection  
plot3(w_range, scale*e(w_range), Im, 'Color', 
'b');          
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% Polar S(w) projection 
plot3(55*e(w_range), Re, Im, 'Color', [0 0.5 0]);            
  
xlabel('Frequency, w'); 
ylabel('Re S(w)'); 
zlabel('Im S(w)'); 
title(['S(w) = ' char(F)]); % convert to string 
  
%% Design features 
% decimate w_range points 4 projection 
p = w_range(1:20:end);     
Re = real(S(1:20:end)); 
Im = imag(S(1:20:end)); 
  
%% Re, Im projection lines 
 
% Real projection lines 
quiver3(p, Re, -e(p)*scale, o(p), o(p), 
Im+e(p)*scale, 0, 'Color', [1 0.7 0.7], 
'ShowArrowHead', 'off'); 
 
% Imag  projection lines 
quiver3(p, e(p)*scale, Im, o(p), Re-e(p)*scale, 
o(p), 0, 'Color',[0.7 0.7 1], 'ShowArrowHead', 
'off'); 
  
% Polar projection lines 
p = w_range(1:20:end);    % decimate 4 projection 
Re = real(S(1:20:end)); 
Im = imag(S(1:20:end)); 
  
quiver3(p, Re, -Im, 55*e(p)-p, o(p),o(p), 0, 
'Color', [0.7 1 0.7], 'ShowArrowHead', 'off');  

C. Matlab code: delta-function sequence (Figure 5) 
%% Delta-limit for fn = sin(nx)/(pi*x) 
hold on; 
  
fn = @(t, n) sin(n*t)./(pi*t); % function sequense 
  
t=-1:0.01:1;                   % timeline 
t(find(t==0))=0.0000001;       % zero-division fix 
  
for n = 1:6 
    plot(t, fn(t, 2^n)); 
end 

D. Matlab code: negative frequencies (Figure 6) 
% Negative frequences 
figure('units', 'normalized', 'outerposition', [0 
0 0.5 1])    % fullscreen/2 
plotArrow3 = @(x, y, z, varargin) 
quiver3(x(1),y(1),z(1), x(2)-x(1), y(2)-y(1), 
z(2)-z(1), 0, varargin{:}); % arrow x1->x2 
  
%% Constant definitions 
w = 2*pi;                         % angle velociry 
ph0 = pi/8;                       % initial phase 
A = 1;                            % amplitude 
  
t_max = 2;                        % time to plot 
N_counts = 60;                    % accuracy 
  
%% Signal 
t = linspace(0, t_max, N_counts); % timeline 
o = zeros(size(t));               % zero-vector 
  
sine_c = A*exp(j*(w*t+ph0));      % complex s-wave 
sine_r = real(sine_c); 
sine_i = imag(sine_c); 

  
%% Figure a: real + image 
subplot(2, 2, 1); hold on; grid on; 
axis([0 t_max -1 1 -1 1]); view(-3, 20); 
title('a) Complex sine wave ($\omega>0$): 
Cartesian'); 
xlabel('Time, t'); 
ylabel('Re z(t)'); 
zlabel('Im z(t)'); 
  
% real part  
plot3(t, sine_r, o, 'r');                         
 
% real + imaginary part 
plot3(t, sine_r, sine_i, 'b');                     
  
% arrow field: real part 
quiver3(t, o, o, o, sine_r, o, 0, 'r');            
 
% arrow field: real + imaginary part  
quiver3(t, sine_r, o, o, o, sine_i, 0, 'b');       
 
% axe line 
plotArrow3([0 t_max], [0 0], [0 0], 'Color', 'k'); 
  
%% Figure b: real+image polar 
subplot(2, 2, 2); hold on; grid on; 
axis([0 t_max -1 1 -1 1]); view(-30, 15); 
title('b) Complex sine wave ($\omega>0$): polar'); 
xlabel('Time, t'); 
ylabel('Re z(t)'); 
zlabel('Im z(t)'); 
  
% sine curve  
plot3(t, sine_r, sine_i, 'k');                     
  
% arrow fields  
quiver3(t, o, o, o, sine_r, sine_i, 0, 'k');       
 
% axe line  
line([0 t_max], [0 0], [0 0], 'Color', 'k');       
  
%% Figure c: real - image 
subplot(2, 2, 3); hold on; grid on; 
axis([0 t_max -1 1 -1 1]); view(-3, 20); 
title('c) Complex sine wave ($\omega<0$): 
Cartezian'); 
xlabel('Time, t'); 
ylabel('Re z(t)'); 
zlabel('Im z(t)'); 
  
% real part  
plot3(t, sine_r, o, 'r');                          
% real - imaginary part  
plot3(t, sine_r, -sine_i, 'b');                    
  
% arrow field: real part  
quiver3(t, o, o, o, sine_r, o, 0, 'r');            
 
% arrow field: real - imaginary part  
quiver3(t, sine_r, o, o, o, -sine_i, 0, 'b');      
 
% axe line  
plotArrow3([0 t_max], [0 0], [0 0], 'Color', 'k'); 
  
%% Figure d: real - image polar 
subplot(2, 2, 4); hold on; grid on; 
axis([0 t_max -1 1 -1 1]); view(-30, 15); 
title('c) Complex sine wave ($\omega<0$): polar'); 
xlabel('Time, t'); 
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ylabel('Re z(t)'); 
zlabel('Im z(t)'); 
  
% sine curve  
plot3(t, sine_r, -sine_i, 'k');                    
  
% arrow fields  
quiver3(t, o, o, o, sine_r, -sine_i, 0, 'k');      
 
% axe line  
line([0 t_max], [0 0], [0 0], 'Color', 'k');       

E. Matlab code: analytical signal (Figure 7) 
% Negative frequences 
figure('units', 'normalized', 'outerposition', [0 
0 0.5 1])    % fullscreen/2 
plotArrow3 = @(x, y, z, varargin) 
quiver3(x(1),y(1),z(1), x(2)-x(1), y(2)-y(1), 
z(2)-z(1), 0, varargin{:}); % arrow x1->x2 
  
%% Constant definitions 
w = 2*pi;                           % angle 
velociry 
ph0 = pi/8;                         % initial 
phase 
A = 1;                              % amplitude 
  
t_max = 2;                          % time to plot 
N_counts = 60;                      % accuracy 
  
%% Signal 
t = linspace(0, t_max, N_counts);   % timeline 
o = zeros(size(t));                 % zero-vector 
  
sine_c = A*exp(j*(w*t+ph0));        % complex sin 
wave 
sine_r = real(sine_c); 
sine_i = imag(sine_c); 
  
%% Figure a: real + image 
subplot(2, 2, 1); hold on; grid on; axis([0 t_max 
-1 1 -1 1]); view(-3, 20); 
title('a) Complex sine wave ($\omega>0$): 
Cartesian'); 
xlabel('Time, t'); ylabel('Re z(t)'); zlabel('Im 
z(t)'); 
  
plot3(t, sine_r, o, 'r');                         
% real part 
plot3(t, sine_r, sine_i, 'b');                    
% real + imaginary part 
  
quiver3(t, o, o, o, sine_r, o, 0, 'r');           
% arrow field: real part 
quiver3(t, sine_r, o, o, o, sine_i, 0, 'b');      
% arrow field: real + imaginary part 
plotArrow3([0 t_max], [0 0], [0 0], 'Color', 
'k');% axe line 
  
%% Figure b: real+image polar 
subplot(2, 2, 2); hold on; grid on; axis([0 t_max 
-1 1 -1 1]); view(-30, 15); 
title('b) Complex sine wave ($\omega>0$): polar'); 
xlabel('Time, t'); ylabel('Re z(t)'); zlabel('Im 
z(t)'); 
  
plot3(t, sine_r, sine_i, 'k');                    
% sine curve 
  
quiver3(t, o, o, o, sine_r, sine_i, 0, 'k');      

% arrow fields 
line([0 t_max], [0 0], [0 0], 'Color', 'k');      
% axe line 
  
%% Figure c: real - image 
subplot(2, 2, 3); hold on; grid on; axis([0 t_max 
-1 1 -1 1]); view(-3, 20); 
title('c) Complex sine wave ($\omega<0$): 
Cartezian'); 
xlabel('Time, t'); ylabel('Re z(t)'); zlabel('Im 
z(t)'); 
  
plot3(t, sine_r, o, 'r');                         
% real part 
plot3(t, sine_r, -sine_i, 'b');                   
% real - imaginary part 
  
quiver3(t, o, o, o, sine_r, o, 0, 'r');           
% arrow field: real part 
quiver3(t, sine_r, o, o, o, -sine_i, 0, 'b');     
% arrow field: real - imaginary part 
plotArrow3([0 t_max], [0 0], [0 0], 'Color', 
'k');% axe line 
  
%% Figure d: real - image polar 
subplot(2, 2, 4); hold on; grid on; axis([0 t_max 
-1 1 -1 1]); view(-30, 15); 
title('c) Complex sine wave ($\omega<0$): polar'); 
xlabel('Time, t'); ylabel('Re z(t)'); zlabel('Im 
z(t)'); 
  
plot3(t, sine_r, -sine_i, 'k');                   
% sine curve 
  
quiver3(t, o, o, o, sine_r, -sine_i, 0, 'k');     
% arrow fields 
line([0 t_max], [0 0], [0 0], 'Color', 'k');      
% axe line 
  
%% Text design 
set(groot, 'defaulttextinterpreter', 'latex');   
set(groot, 'defaultAxesTickLabelInterpreter', 
'latex');   
set(groot, 'defaultLegendInterpreter', 'latex');  
set(findall(gcf,'-property', 'FontSize'), 
'FontSize', 10); 
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