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Abstract — The article describes one of the powerful tools 
for the signals analysis while transmission – complex 
mathematics. Here the basic concepts (complex numbers, 
complex signal as expansion of a real signal to a complex-
valued function) and some operations (exponentiation, absolute 
value and angular phase representation) are introduced. 

As an example complex mathematical methods are used for 
the case of classical electrical circuits with resistors, capacitors, 
coils. Actions can be performed both analytically and on a 
computer, using, for example, MatLab or any other computing 
software. 

Illustrations of the signal passage through electrical circuits 
are supplied with a commented Matlab code, which is used to 
their producing. 

The article is supposed to be used as a teaching aid, for self-
learning the basics of the signal processing. It is considered as a 
first introduction part of a series on modern signal processing 
technologies. 

Three main approaches to the exploring of the case are also 
demonstrated: ideological (experiment and its principal 
explanation), mathematical and computer modeling. 

Keywords — complex numbers, complex signals, AC circuits, 
impedance, MatLab. 

I. INTRODUCTION 
This article is an introduction to a series related to the 

signal processing tasks, actual for radio astronomy 
measurements and satellite data collection. The works are 
focused on applications of the “Ventspils International 
Radio Astronomy Center” of the Ventspils University of 
Applied Sciences, for example, for signal processing at the 
Reconfigurable Communication Subsystem, obtained from a 
16-meter diameter parabolic antenna [1]. Digital section 
consists: in-flight reconfigurable FPGA baseband processor; 
subsystem managing microcontroller; radiation resistant 
FRAM memory. Analog section: 802.11a WLAN 
ADC/DAC frontend; 802.11a WLAN RF transceiver; RF 
PA and LNA. 

 
Fig. 1. Reconfigurable Communication Subsystem block diagram [1] 
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The rest of the paper is the following. In Section 2, 
electrical response to alternative voltage of the basic 
elements like resistance, capacitor and coil is discussed. 
Section 3 suggests mathematical description of alternative 
current and Section 4 apply it to a previously explored 
elements behavior. Sections 5 and 6 introduce complex 
numbers and signals (like complex sine wave) 
correspondently. Section 6 applies this mathematical tool for 
each element. And in Section 7 this method is used to 
analyze RC and RL-circuits analytically and using MatLab 
computing.  

II. RESISTANCE, CAPACITOR AND COIL (R, C, L) 
ALTERNATING CURRENT 

We borrow the description of schemes from the 
textbook [2]. 

If we apply the voltage of a simple alternative (harmonic) 
current source to the basic electrical elements and then 
explore the current flowing through them using 
oscilloscope, we get different results, shown on Figure 2. 

 
 

Fig 2. Time diagrams of alternating current on basic elements 
for applied harmonic voltage with amplitude 1 V, frequency 50 Hz 

simulation: resistor with resistance 2 kOm (a), capacitor with 
capacitance 5 mF (b), coil with inductance 10 mH (c) comparing 

with the voltage. 

Matlab code: 
% Time parameters 
t0 = 0;             % start time 
t1 = 8/50;          % finish time 
steps = 1000;       % time accuracy step 
  
% Cosine generator signal parameters 
U0 = 1;             % amplitude 
w0 = 50*pi;         % angular frequency 
p0 = pi;            % initial phase 
  
% RCL parameters 
R = 2e3;            % 2 kOm 
C = 5e-3;           % 5 mF 
L = 10e-3;          % 10 mH 
  
% Processing 
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t = linspace(t0, t1, steps);     % timeline 
  
% voltage  
U = U0*cos(w0*t + p0);                   
 
% resistance current 
I_R = (U0/R)*cos(w0*t + p0); 
 
% capacitor current  
I_C = (U0/w0/C)*cos(w0*t + p0 + pi/2); 
 
% coil current 
I_L = (U0*L*w0)*cos(w0*t + p0 - pi/2);   
 
% Plot a: resistor 
figure();subplot(3,1,1);hold on; grid on; 
plot(t, U);         % plot voltage 
plot(t, 1e3*I_R);   % plot current 
title('a) Voltage and current on the resistor'); 
xlabel('Time, sec.');ylabel('U_R (V); I_R (mA)'); 
legend('U_R', 'I_R'); 
  
% Plot b: capacitor 
subplot(3,1,2);hold on; grid on; 
plot(t, U);         % plot voltage 
plot(t, I_C);       % plot current 
title('b) Voltage and current on the capacitor'); 
xlabel('Time, sec.'); 
ylabel('U_C (V); I_C (A)'); 
legend('U_C', 'I_C'); 
  
% Plot c: coil 
subplot(3,1,3);hold on; grid on; 
plot(t, U);         % plot voltage 
plot(t, I_L);       % plot current 
title('c) Voltage and current on the coil'); 
xlabel('Time, sec.');ylabel('U_L (V) / I_L (A)'); 
legend('U_L', 'I_L'); 

In all the cases the shape of the current is the same as for 
initial voltage. But it is scaled in all of them and shifted in 
time for the capacitor and the coil. 

If we do some more tests then we explore: 
 time shift doesn’t depend on the parameters of the 

element – just on the type; 
 a increase in frequency leads to a proportional change 

in the scale of the current for the same coil (increases) 
and inductive (reduces) and doesn’t affect the resistor; 

 increasing the nominal of the element (resistance, 
capacitance, inductance) proportionally changes the 
scale: reduces (resistance, capacitance)  or increases 
(coil). 

Let’s try to explain these properties and offer the way to 
predict the currents and voltages of the complex schemes 
with these types of elements. 

III. SINE WAVE (ALTERNATIVE VOLTAGE) 
The voltage of a harmonic current source (that we could 

interpret as a signal) has a shape of one of the basic 
analogous (i.e. continuous, without breaks) signals called 
“sine wave”. It’s a mathematical curve that describes a 
smooth periodic oscillation (most commonly used in 
communications). One of its common form is: 

𝑠(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑0) = 𝐴 cos𝜑(𝑡) 
where: 
 

 “A” is called amplitude (corresponds to maximum 
value of s) 

 “𝜔” is called angular frequency (corresponds to 
changes measured in radians per second”. To use 
common frequency in Hz we should divide 𝜔 to 2𝜋: 
𝑓 = 𝜔

2𝜋
 

 “𝜑0” is called initial phase (specified initial value of s 
for t=0, in radians). For example, if 𝜑0 = 𝜋/2 then 
𝑠(𝑡) = 𝐴 cos�𝜔𝑡 + 𝜋

2� � =𝐴 sin(𝜔𝑡) 
 “𝜑 = 𝜑(𝑡)” is called full phase or current phase. 

If all but t parameters always stay the same, we say that 
signal is stationary. In practice some of these parameters 
changes to add some more information – that is called 
“modulation”. 

As we have just one changing parameter (t or 𝜑(𝑡) 
derived from it) we could make differens 2D visualizations 
of it: 

 
Fig. 3. Sine wave different visualizations: 𝑠(𝑡) as a time-

function (a), phase 𝜑(𝑡) as a time-function (b), 𝑠(𝜑)  as a phase-
function (c) on Cartesian planes, and 𝑠(𝜑) as a phase-function on 

the polar plane (d). 

Because the sine/cosine takes on the same values for any 
𝑥 = 𝑥0 + 2𝜋 × 𝑖 (where 𝑖 is integer), polar description 
(signal as a function of a phase) is not definitely reversible. 
For each function value there are multiple possible phases 
giving it. Several interpretations of that are possible: 
 suggest that phase abruptly decreases to 0 when 

reaches 2π (see b, c on Figure 3); 
 imagine sine function as an infinite number of phases 

(indistinguishable), that are “active” when their value 
is in range [0 - 2π] (see b on Figure 3); 

 consider only representation in polar coordinates (see d 
on Figure 3) – with obvious round cycle; 

The interesting and important fact is that rate of sine wave 
change is also sine wave (scaled and time shifted): 
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𝑑𝑠(𝑡)
𝑑𝑡

=
𝑑 cos(𝜔𝑡 + 𝜑0)

𝑑𝑡
= −𝐴ω sin(𝜔𝑡 + 𝜑0)

= 𝐴ω cos �
𝜋
2

+ 𝜔𝑡 + 𝜑0� = 𝜔𝑠 �𝑡 +
𝜋

2𝜔
� 

IV. SINE WAVE PASSING THROUGHT RESISTOR, 
CAPACITOR, COIL IN CIRCUITS 

When sine wave signal (sinusoidal alternating voltage) is 
applied to active (ohmic) resistance, value current is 
proportional to  fall of potential on this element and has the 
zero time shift, i.e., they coincide in phase (see Figure 2a 
and 4a). 

 
Fig. 4. Vector diagram for of alternating voltage and current 
value on basic elements: resistor (a), capacitor (b), coil (c)  

This is displayed in physics as Ohm’s law as a definition 
for resistor resistance: 

𝑈𝑅(𝑡) = 𝑅 × 𝐼(𝑡) 
The situation is different when an external sine voltage is 

applied to a capacitor (two metal plates separated by a 
dielectric). Through an ideal capacitor the flow of electrons 
(that is an electric current in fact) does not pass. But when 
external voltage is changed, the first capacitor’s plane 
immidiately accumulates additional electrons and the second 
plate emits them compensating the new voltage level. The 
greater the change in voltage (over time), the greater is the 
number of accumulated and emmited electons (over that 
time). In oher words, the current is proportional to a voltage 
change rate. 

Therefore the “charging” current flows in the circuit 
before and after the capacitor during the voltage growth to 
the peak. When external voltage begins to decrease (from 
the maximum value to 0), a similar reversed “discharge” 
apears. Then the same process occurs in the opposite 
direction (to a negative maximum and again back to zero). 

Mathematically, this current dependence on changes in 
external voltage is written as the definition of inductance 
(assuming the current is linearly dependent on voltage 
change rate): 

𝐼𝐶(𝑡) = 𝐶
𝑑𝑈𝐶(𝑡)
𝑑𝑡

= 𝐶
𝑑 cos(𝜔𝑡 + 𝜑0)

𝑑𝑡
= 𝜔𝐶 × 𝑈(𝑡 +

𝜋
2𝜔

) 
Or: 

𝑈(𝑡) =
1
𝜔С

𝐼𝐶 �𝑡 −
𝜋

2𝜔
� 

Thus, the sinusoidal form of the signal is preserved. This 
fact has fundamental importance for the linearity of systems 
and for using of complex voltages that can be represented as 
sum of sinusoids due to the Fourier transform. But 
charging/discharging of a capacitor causes a shift between 
the voltage and the current (phase shift 𝜑 = 90° 
corresponds to − 𝜋

2𝜔
 time shift), which is shown in the 

timeline (Figure 2b) and vector diagrams (Figure 4b). In 
addition, the amplitude of current and voltage does not 
depend only on the capacitance С, but also on the frequency 
of change of the external voltage. 

Similarly, when a flow of electrons (electical current) 

starting to move throught the coil under the force of the 
applied external voltage 𝑈(𝑡), it generates a magnetic field 
around it according to Maxwell's laws. This magnetic field 
creates a self-induction vsoltage 𝐸(𝑡) in the coil, directed 
against the external voltage and equals to that to that 
slowing down the current rise on the coil. When the external 
field becomes zero, the current arising stops (and so the self-
induction does), the current has the maximum value. Then 
the current decreasing to zero begins. After that the same 
cycle in the negative values takes the place. 

In mathematical form: 

𝐸(𝑡) = −𝑈(𝑡) = −𝐿
𝑑𝐼(𝑡)
𝑑𝑡

= − cos(𝜔𝑡 + 𝜑) 
So,  

𝐼(𝑡) = −
1
𝐿𝜔

sin(ωt + φ) =
1
𝐿𝜔

cos �ωt + φ −
π
2
�

=
1
𝐿𝜔

U �t −
π

2𝜔
� 

So the current is ahead of the voltage in the coil  in 90 
degrees (or π

2𝜔
 seconds), or we could say the voltage is 

behind of the current. Sinusoidal waveform is preserved, the 
proportionality coefficient of the amplitudes of voltage and 
current also depends not only on the characteristics of the 
coil (inductance), but also on the frequency of the signal, 
that is, the rate of its change: 

UL(t) = 𝐿𝜔 × 𝐼𝐿 �𝑡 +
π

2𝜔
� 

Composite schemes with these elements can be analyzed 
using vector form (analytically or graphically), or the 
complex representation of numbers and signals could be 
uased to keep the convenient simple form of Ohm's law: 

𝑈𝐶(𝑡) = 𝑋𝐶 × 𝐼(𝑡) 
𝑈𝐿(𝑡) = 𝑋𝐿 × 𝐼(𝑡) 

V. COMPLEX NUMBERS 
Complex number is the mathematical abstraction, that has 

the form: 𝑥 = 𝑎 + 𝑗𝑏, where a and b are real numbers 
(called “real part” and “imaginary part” respectively) and  j 
is a solution of the equation 𝑗2 = 1. No real number 
correspond a j, so it is called “imaginary”. Imaginary and 
real part of complex number are completely independent 
(one cannot be received from the other with any 
mathematical operations). 

Complex numbers are the powerful tool to operate with 
different physical processes. Basic operations with these 
type of numbers are obvious from the definition (addition, 
multiplication and so on). 

Real part of x (a) usually noted 𝑅𝑒(𝑥) or 𝑅𝑒 𝑥 x and 
imaginary part (b) noted 𝐼𝑚(𝑥)or 𝐼𝑚 𝑥. The number 
𝑥∗ = 𝑎 − 𝑗𝑏 = 𝑅𝑒(𝑥) − 𝑗𝐼𝑚(𝑥) is called “complex 
conjugate”. Because of x is a function of 2 independent 
parameters (a and b), it could be shown on the “complex” 
plane: 
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Fig. 5. Complex number 𝑧 = 𝑅𝑒(𝑧) + 𝑗𝐼𝑚(𝑧)on complex plane 

(polar properties: length|𝑧| = �𝑅𝑒(𝑧)2 + 𝐼𝑚(𝑧)2, phase 𝜑 =
𝑎𝑟𝑐𝑡𝑔�𝐼𝑚 𝑧

𝑅𝑒 𝑧� �) and complex conjugate 𝑧∗ = 𝑅𝑒(𝑧) − 𝑗𝐼𝑚(𝑧). 

Also it could be written as a vector: 

�
𝑎
𝑏
� = �

𝑅𝑒(𝑥)
𝐼𝑚(𝑥)� 

for processing as common Cartesian vectors. Alternative 
we could use the polar coordinates – length and angle: 

�
|𝑥|
𝜑
� = �

√𝑎2 + 𝑏2

𝑎𝑟𝑐𝑡𝑔(𝑏 𝑎� )
� 

In this representation we could use all the methods of 
analytical geometry. 

Exponentiation: Euler's formula states that, for any real 
number x: 

𝑒𝑗𝑥 = cos 𝑥 + 𝑗 sin 𝑥 
where e is the base of the natural logarithm. 
Complex conjugate for this number is cos 𝑥 − 𝑗 sin 𝑥 =

cos(−𝑥) + 𝑗 sin(−𝑥) = 𝑒−𝑗𝑥. 
This type of representation of trigonometric functions 

makes many operations with them easier. 

VI. COMPLEX SINE WAVE 

Sine wave could be written as 
𝑠(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑0) = 𝑅𝑒�𝐴 × 𝑒𝑗(𝜔𝑡+𝜑0)�

= 𝑅𝑒(𝐴 × 𝑒𝑗𝜑0 × 𝑒𝑗𝜔𝑡) = 𝑅𝑒(𝑍 × 𝑒𝑗𝜔𝑡)
= 𝑅𝑒�𝑍(𝑡)�, 

or: 

𝑠(𝑡) =
𝑅𝑒 𝑍(𝑡) + 𝐼𝑚 𝑍(𝑡)

2
, 

where 𝑍 = 𝐴 × 𝑒𝑗𝜑0 called “complex amplitude” and 
𝑍(𝑡) = 𝑍 × 𝑒𝑗𝜔𝑡 = 𝐴 × 𝑒𝑗𝜑0 × 𝑒𝑗𝜔𝑡 = 𝐴(cos(𝜔𝑡 + 𝜑0) +
𝑗 sin(𝜔𝑡 + 𝜑0)) called “complex sine wave”. 

 

 
Fig. 6. Complex sine wave 𝑧(𝑡) = 𝐴𝑒𝑗𝜑0 × 𝑒𝑗𝜔𝑡 (with 𝐴 = 1, 

𝜔 = 2𝜋, 𝜑0 = 𝜋
8� ): Cartesian (a), polar (b),  three-dimensions 

Re-Im (c) and Abs-Angle (d) representations. Real part 
corresponds to real sine wave 𝑠(𝑡) = 𝑐𝑜𝑠(𝜔𝑡 + 𝜑0) with the same 
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Matlab code (some design features are skipped): 
% Complex sine wave 
figure('units', 'normalized', 'outerposition', [0 
0 0.8 1]); 
 
%% Constants definition 
A = 1;                  % amplitude 
w = 2*pi;               % angle velocity 
ph0 = pi/8;             % initial phase 
 
scale = 2; 
N_counts = 100;         % accuracy 
t_max = 3;              % max time to plot 
t_min = 0;              % min time to plot 
 
%% Processing 
t = linspace(0, t_max, N_counts);  % timeline 
t_step = (t_max-t_min) / N_counts; % time step 
 
sine_c = A*exp(j*(w*t+ph0)); % complex sine wave  
Re = real(sine_c);           % real part of z(t) 
Im = imag(sine_c);           % imaginary of z(t) 
 
o = @(t) zeros(size(t));     % zero-vector 
e = @(t) ones(size(t));      % one-vector 
ph_full = @(t) w*t+ph0;      % full-phase 
 
%% Figure a1: Re/Im in 2d 
subplot(4, 2, 1); hold on; grid on; 
 
plot(t, Re, 'r');            % plot Re 
plot(t, Im, 'b');            % plot Im 
 
%% Figure a2: Abs / angle in 2d 
subplot(4, 2, 3); hold on; 
plot(t, abs(sine_c), 'm');   % plot Abs 
 
% plot angle 
for i = ceil((w*t_min+ph0)/2/pi)-
1:floor((w*t_max+ph0)/2/pi) 
    % before and after pi 
    t_start = min(max((pi*(2*i-1)-ph0)/w, t_min), 
t_max);      
    t_end = max(min((pi*(2*i+1)-ph0)/w, t_max), 
t_min); 
    t_temp = t_min:t_step:t_max;                                   
    plot(t_temp,ph_full(t_temp)-2*pi*i, 'Color', 
[0 0.7 0], 'LineStyle', ':'); 
    % -pi - pi 
    t_temp = t_start:t_step:t_end;                              
    plot(t_temp,ph_full(t_temp)-2*pi*i, 'Color', 
[0 0.7 0], 'LineStyle', '-'); 
end 
 
%% Figure b: Abs/angle in 2d 
subplot(4, 2, [5,7]); 
scale_trick=polar([0 0], [0 A*2]); 
% polar scale trick  
set(scale_trick, 'Visible', 'off'); hold on;  
 
polar(angle(sine_c), abs(sine_c), 'k');    % Polar 
 
%% Figure c: Re/Im in 3d 
subplot(4, 2, [2,4]); hold on; grid on; 
view(30, 26); 
 
% Complex sine curve  
plot3(t, Re, Im, 'k', 'LineWidth', 3); 
plot3(t, e(t)*scale, Im, 'b');  % Im projection 
plot3(t, Re, -e(t)*scale, 'r'); % Re projection 
plot3(-1*e(t), Re, Im, 'g');    % Polar projection 

% polar vectors 
quiver3(t, o(t), o(t), o(t), Re, Im, 0, 'Color', 
[0.5 0.5 0.5]); 
 
%% Figure d: abs / angle 
subplot(4, 2, [6,8]); hold on; grid on; view(30, 
26); 
 
% Compex sine wave 
plot3(t, angle(sine_c), abs(sine_c), 'k', 
'LineWidth', 3); 
% Abs projection 
plot3(t, e(t)*1.5*pi, abs(sine_c), 'b'); 
% Angle projection                             
plot3(t, angle(sine_c), -e(t)*scale, 'g');     

Matlab code for the Figutre 7 (some design features are 
skipped): 
% Complex sine forming 
figure('units', 'normalized', 'outerposition', [0 
0 0.5 1]) 
 
%% Constants definition 
w = 2*pi;           % angle velociry 
ph0 = pi/8;         % initial phase 
A = 1;              % amplitude 
t_max = 2;          % time to plot 
N_counts = 60;      % accuracy 
 
%% Signal 
t = linspace(0, t_max, N_counts);% timeline 
o = zeros(size(t));              % zero-vector 
 
sine_c = A*exp(j*(w*t+ph0));    % comlex sine wave 
sine_r = real(sine_c); 
sine_i = imag(sine_c); 
 
%% Figure a: real 
subplot(2, 2, 1); hold on; grid on; 
xlim([0 t_max]); ylim([-1 1]); 
zlim([-1 1]); view(-40,40); 
 
plot3(t, sine_r, o, 'r');       % sine curve 
quiver3(t, o, o, o, sine_r, o, 0, 'r'); % ar-field 
 
%% Figure b: imaginary part 
subplot(2, 2, 2); hold on; grid on; 
xlim([0 t_max]); ylim([-1 1]); 
zlim([-1 1]); view(-40,40); 
 
plot3(t, o, sine_i, 'b');      % sine curve 
quiver3(t, o, o, o, o, sine_i, 0, 'b'); % ar-field 
 
%% Figure c: real + imaginary 
subplot(2, 2, 3); hold on; grid on; 
xlim([0 t_max]); ylim([-1 1]); 
zlim([-1 1]); view(-3,20); 
 
plot3(t, sine_r, o, 'r');     % sine curves 
plot3(t, sine_r, sine_i, 'b'); 
 
quiver3(t, o, o, o, sine_r, o, 0, 'r'); % ar-field 
quiver3(t, sine_r, o, o, o, sine_i, 0, 'b') 
 
%% Figure d: result polar 
subplot(2, 2, 4); hold on; grid on; 
xlim([0 t_max]); ylim([-1 1]); 
zlim([-1 1]); view(-30,15); 
 
quiver3(t, o, o, o, sine_r, sine_i, 0, 'k'); 
plot3(t, sine_r, sine_i, 'k');    % arrow field                       
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Fig. 7. Complex sine wave forming 𝑧(𝑡) = 𝐴 𝑅𝑒 𝑧(𝑡) +

 𝑗 𝐴 𝐼𝑚 𝑧(𝑡) = 𝐴 𝑐𝑜𝑠(𝜔𝑡 + 𝜑0) + 𝑗 𝐴 𝑠𝑖𝑛(𝜔𝑡 + 𝜑0) forming 
process (with 𝜔 = 2𝜋, 𝜑0 = 𝜋

8� ) 

So, the real and imaginary parts in complex sine wave are 
not independent. They are bind so that imaginary part 
exactly repeats the real part with a phase shift 𝜋 2�  
corresponding to time delay 𝜋 2𝜔� . 

The real part of complex sine wave corresponds to a real 
sine signal. And imaginary part is synchronous addition to 
that, and is needed to provide this in a complex space. 

VII. COMPLEX IMPEDANCE OF THE RESISTOR, 
CAPACITOR, COIL 

The phase difference between the voltage and the current 
of the coil or capacitor can be taken into account, while 
maintaining the convenient form of Ohm's law (voltage 
equal to the current multiplied by the resistance). Of couse, 
we should imagine complex sine wave generator 𝑈(𝑡) to 
provide that it’s real part will correspond to a real sine 
signal. 

We assume that the resistance has a phase: 
𝑅𝐶 = 𝑋𝐶 = |𝑋𝐶|𝑒𝑗𝜑 

The phase delay of the voltage on the capacitor by -90 
degrees from the current (𝜑 = −𝜋/2, that is, 1/4 of the full 
period) means: 

𝑈𝐶 = 𝐼𝐶 × |𝑋𝐶|𝑒𝑗𝜑 = 𝐼𝐶 × |𝑋𝐶|𝑒𝑗�−
𝜋
2� = 𝐼𝐶 ×

1
𝜔𝐶

𝑒−𝑗
𝜋
2  

According to Euler’s formula: 

𝑒𝑗�−
𝜋
2� = cos �−

𝜋
2
� + 𝑗 sin �−

𝜋
2
� = −𝑗 =

1
𝑗

 

Therefore, Ohm's law for a capacitor can be written in the 
form of capacitance: 

𝑈𝐶(𝑡) = 𝑋𝐶 × 𝐼𝐶(𝑡) =
1
𝑗𝜔С

× 𝐼𝐶(𝑡) = −𝑗
1
𝜔С

× 𝐼𝐶(𝑡) 

Similarly, due to the fact that the amplitudes of the 
voltage and current on the coil are related as |𝑋𝐿| = 𝜔𝐿, and 
the current shift from the voltage is +90 degrees: 

𝑈𝐿(𝑡) = 𝑋𝐿 × 𝐼𝐿(𝑡) = 𝑗𝜔𝐿 × 𝐼𝐿(𝑡) 
These complex resistance analogs are called “reactance” - 

resistance that a capacitor or inductance exerts on 
alternating current. Reactive resistance in contrast to active 
resistance does not consume energy, but accumulates it and 
returns it to the circuit. 
Any real elements contain both active and reactive 
(inductive and capacitive) resistance and can be represented 
as their sum, the so-called impedance[3]: 

𝑍 = (𝑅𝑒 𝑍 +  𝑗 𝐼𝑚 𝑍) = 𝑅 + 𝑗𝑋 
𝑈𝐴(𝑡) = 𝑍 × 𝐼𝐴(𝑡) = (𝑅𝑒 𝑍 +  𝑗 𝐼𝑚 𝑍) × 𝐼𝐴(𝑡)

=  |𝑍|𝑒𝜑𝑍 × 𝐼𝐴(𝑡) 
The impedance at X = 0 corresponds to the active 

resistance R, at X> 0 has a capacitive and when X<0 – 
inductive type. 

Calculations of parallel and serial connections of active 
elements (coils and capacitors), as well as passive 
(resistors), can be used in this complex form, as well as in 
the vector form: 

𝑍𝑠𝑒𝑟𝑖𝑒𝑠 = �𝑍𝑖

𝑛

𝑖=1

 

1
𝑍𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

= �
1
𝑍𝑖

𝑛

𝑖=1
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Matlab code: complex method gives the same result as on 
Figure 2. 
% Time parameters 
t0 = 0;             % start time 
t1 = 8/50;          % finish time 
steps = 1000;       % time accuracy step 
  
% Cosine generator signal parameters 
U0 = 1;             % amplitude 
w0 = 50*pi;         % angular frequency 
p0 = pi;            % initial phase 
  
% complex sine wave  
c = @(t) U0*exp(j*(w0*t + p0));  
  
% RCL parameters 
R = 2e3;            % 2 kOm 
C = 5e-3;           % 5 mF 
L = 10e-3;          % 10 mH 
  
% Impedance 
X_R = R; 
X_C = 1/(j*w0*C); 
X_L = j*w0*L; 
  
% Processing 
t = linspace(t0, t1, steps); 
  
U = c(t);           % voltage 
I_R = U/X_R;        % resistance current 
I_C = U/X_C;        % capacitor current  
I_L = U/X_L;        % coil current 
  
% Plot a: resistor 
figure();subplot(3,1,1);hold on; grid on; 
plot(t, real(U));         % plot voltage 
plot(t, 1e3*real(I_R));   % plot current 
title('a) Voltage and current on the resistor'); 
xlabel('Time, sec.'); 
ylabel('U_R (V); I_R (mA)'); 
legend('U_R', 'I_R'); 
  
% Plot b: capacitor 
subplot(3,1,2);hold on; grid on; 
plot(t, real(U));         % plot voltage 
plot(t, real(I_C));       % plot current 
title('b) Voltage and current on the capacitor'); 
xlabel('Time, sec.'); 
ylabel('U_C (V); I_C (A)'); 
legend('U_C', 'I_C'); 
  
% Plot c: coil 
subplot(3,1,3);hold on; grid on; 
plot(t, real(U));         % plot voltage 
plot(t, real(I_L));       % plot current 
title('c) Voltage and current on the coil'); 
xlabel('Time, sec.'); 
ylabel('U_L (V) / I_L (A)'); 
legend('U_L', 'I_L'); 

VIII. EXAMPLE. ANALYSIS OF RC AND RL CIRCUITS 

A. RC circuit 
Figure 7 shows the series connection of resistance R and 

capacitor C. The task is to determine the particular voltages 
UR and UC. The circuit has a resistance R and a reactance 
capacitor XС, which introduces a phase shift between current 
I and voltage U. 

 
Fig. 8. RC circuit and its time and vector diagrams 

The time diagram shows the four curves I, U, UC and UR. 
It is seen that the current I is ahead of the voltage UC by 900, 
but the phase shift between the common voltage U and the 
current I is in the range between 0 and 90 degrees. 

Summary impedance: 

𝑍 = 𝑍𝑅 + 𝑍𝐶 = 𝑅 − 𝑗
1
𝜔С

 
Though voltage in the circuit is U, the current is 

𝐼𝑅 = 𝐼𝐶 =
𝑈
𝑍

=
𝑈

𝑅 − 𝑗 1
𝜔С

 

Voltage drop on resistor is: 

𝑈𝑅 = 𝑅 × 𝐼𝑅 = 𝑈
𝑅

𝑅 − 𝑗 1
𝜔С

= 𝑈
1

1 − 𝑗 1
𝜔𝑅С

= 𝑈
𝜔𝑅С

𝜔𝑅С − 𝑗

= 𝑈 �1 +
1

(𝜔𝑅С)2 − 1
+ 𝑗

𝜔𝑅С
(𝜔𝑅С)2 − 1

� 

Voltage drop on capacity is: 

𝑈𝐶 = 𝑈 − 𝑈𝑅 = 𝑈 �
1

1 − (𝜔𝑅С)2 − 𝑗
𝜔𝑅С

(𝜔𝑅С)2 − 1
� 

So the real voltages are: 

𝑅𝑒 𝑈𝑅 = 𝑈 �1 +
1

(𝜔𝑅С)2 − 1
� 

𝑅𝑒 𝑈𝐶 = 𝑈
1

1 − (𝜔𝑅С)2 

B. RL-circuit 
Figure 8 shows the series connection of resistance R and 

inductance L. The task is to determine the particular 
voltages UR and UL. The circuit has a resistance R and a 
reactance inductance XL, which also introduces a phase shift 
between current I and voltage U, but it has a different 
character. 

 
Figure 9. RL-circuit and its time and vector diagrams 

Figure 8 shows that the reactive voltage UL is 90О ahead 
of the current I, the active voltage UR is in the same phase as 
the current I, the phase shift between the common voltage U 
and the current I is in the range between 0 and 90 degrees. 

Summary impedance: 
𝑍 = 𝑍𝑅 + 𝑍𝐿 = 𝑅 + 𝑗𝜔𝐿 
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Though voltage in the circuit is U, the current is 

𝐼𝑅 = 𝐼𝐿 =
𝑈
𝑍

=
𝑈

𝑅 + 𝑗𝜔𝐿
 

Voltage drop on resistor is: 

𝑈𝑅 = 𝑅 × 𝐼𝑅 = 𝑈
𝑅

𝑅 + 𝑗𝜔𝐿
= 𝑈

1

1 + 𝑗 𝜔𝐿𝑅

= 𝑈�
1

1 − �𝜔𝐿 𝑅� �
2 − 𝑗

𝜔𝐿
𝑅�

1 − �𝜔𝐿 𝑅� �
2� 

Voltage drop on inductance is: 

𝑈𝐿 = 𝑈
𝑗𝜔𝐿

𝑅 + 𝑗𝜔𝐿
= 𝑈�

𝑅�𝜔𝐿 𝑅� �
2

1 − �𝜔𝐿 𝑅� �
2 + 𝑗

𝜔𝐿

1 − �𝜔𝐿 𝑅� �
2� 

So the real voltages are: 

𝑅𝑒(𝑈𝑅) =
𝑈

1 − �𝜔𝐿 𝑅� �
2 

𝑅𝑒(𝑈𝐿) = 𝑈
𝑅�𝜔𝐿 𝑅� �

2

1 − �𝜔𝐿 𝑅� �
2 

 
Figure 10. Time diagrams simulation for RC (a) and RL (b) 
circuits for applied harmonic voltage with amplitude 1 V, 

frequency 50 Hz: resistor with resistance 2 Om, capacitor with 
capacitance 5 mF, coil with inductance 10 mH 

Matlab code: 
% Time parameters 
t0 = 0;             % start time 
t1 = 4/50;          % finish time 
steps = 1000;       % time accuracy step 
  
% Cosine generator signal parameters 
U0 = 1;             % amplitude 
w0 = 50*pi;         % angular frequency 
p0 = pi;            % initial phase 
  
% complex sine wave  
c = @(t) U0*exp(j*(w0*t + p0));  
  
% RCL parameters 
R = 2;              % 2 Om 
C = 5e-3;           % 5 mF 
L = 10e-3;          % 10 mH 
  
% Impedance 
X_R = R; 
X_C = 1/(j*w0*C); 
X_L = j*w0*L; 

  
% Processing 
t = linspace(t0, t1, steps); 
  
U = c(t);                 % voltage 
  
I_RC = U/(X_R+X_C);       % RC-current 
U_RC_R = X_R * I_RC;      % U_R in RC circuit 
U_RC_C = X_C * I_RC;      % U_C in RC circuit 
  
I_RL = U/(X_R+X_L);       % RC-current 
U_RL_R = X_R * I_RL;      % U_R in RL circuit 
U_RL_L = X_C * I_RL;      % U_C in RL circuit 
  
% Plot a: RC 
figure();subplot(2,1,1); hold on; grid on; 
plot(t, real(U));         % plot voltage 
plot(t, real(I_RC));      % plot current 
plot(t, real(U_RC_R));    % plot U_R 
plot(t, real(U_RC_C));    % plot U_C 
title('a) Voltages and current in RC-circuit'); 
xlabel('Time, sec.');ylabel('U(V); I (A)'); 
legend('U', 'I', 'U_R', 'U_C'); 
  
% Plot b: RL 
subplot(2,1,2); hold on; grid on; 
plot(t, real(U));         % plot voltage 
plot(t, real(I_RL));      % plot current 
plot(t, real(U_RL_R));    % plot U_R 
plot(t, real(U_RL_L));    % plot U_L 
title('b) Voltages and current in RL-circuit'); 
xlabel('Time, sec.');ylabel('U(V); I (A)'); 
legend('U', 'I', 'U_R', 'U_L'); 

IX. CONCLUSION 
The basic concept tool of signal processing analysis was 

discussed: the complex mathematical method basics, like 
complex sine wave signal and related operations. The in 
following parts some technologies based on this idea are 
planned to discuss: spectrum, analytical (complex) 
representation of a signal, information (digital) signal, 
modulations, spectrum modifications (like Direct Sequence 
Spread Spectrum, Frequency Hopping, Time  Hopping, 
Chirp Spread), etc. 
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