
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 11, 2018

An approach to the classification
of the loops of finite automata. Part II:

The classification of the states based on the loops

B. F. Melnikov, A. A. Melnikova

Abstract—In this paper, we considered questions of the pos-
sible classification of the states and loops of a nondeterministic
finite automaton.

For the development of algorithms for equivalent transforma-
tion of nondeterministic finite automata, we consider the basis
finite automaton for the given regular language and the paths
and loops of its transition graph. We also consider the paths
and loops of the transition graph of another nondeterministic
automaton that defines the same language. On the basis of
this, we define corresponding paths and loops of two men-
tioned automata and the questions of their classification. This
classification gives, for example, the possibilities for describing
some heuristic algorithms for minimization of nondeterministic
automata.

For the last thing, we describe the following objects. For
each state of the basis automaton, we consider the states of
the given automaton corresponding to this state of the basis
automaton, and give their classification as a function of the
loops passing through the same state of the basis automaton.
Their subset is the set of so-called including loops, on the basis
of which we determine so-called partially complete loops. For
any chosen vertex of the basic automaton, we call the vertices
of the considered nondeterministic automaton, through which
all possible partially complete loops pass, by complete cyclic
states.

At the end of the paper, we formulate the hypothesis that if
for any state of the considered nondeterministic automaton,
there exists at least one corresponding state of the basis
automaton, such that the first one is a complete cyclic state
for the second one, then all the corresponding states of the
basis automaton are such ones.

In the presented Part II of the paper, we are considering
issues of a special classification of states of any nondeterministic
finite automaton. This classification is based on the application
of developed in the first part of this paper classification of the
loops.

Keywords—nondeterministic finite automata, basis automa-
ton, transition graph, path, loop, algorithms for equivalent
transformation, universal automaton.

This paper is a continuation of [1] (i.e., Part I). We
consider the issues of a special classification of states of
any nondeterministic finite automaton. This classification is
based on the application of developed in Part I of this paper
classification of the loops.

We continue the numeration of sections, definitions, fig-
ures, equations, etc. For the convenience of reading, we shall
also repeat some figures and tables given already in [1], [2].
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VII. SETS Ψ(q), GRIDS AND PSEUDO-GRIDS

Definition 2: For each state q ∈ Q, we shall denote

Ψ(q) = ϕinK (q)× ϕoutK (q). �

In fact, this definition also defines a pseudo-grid; defini-
tions and examples of pseudo-grids and grids were given in
[4, Section 3].

Let us continue to consider regular language

(a+ ab+ ba)∗. (9)

(i.e., [1, Eq. (5)]). We continue to consider two the following
automata for this language:
• the canonical automaton of Fig. 12 (i.e., [1, Fig. 4]):
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• automaton of Fig. 13 (i.e., [1, Fig. 6]):

?6

��
��
��
��
q2 B

XZ

� a

-b ��
��
��
��
q1 AB

XY ����
I

a

?
b

6
a

��
��
��
��
q3 AC

Y

Fig. 13

We shall also consider a new automaton for the same lan-
guage (9):
• automaton of Fig. 14, see below; for the considered

language L, it is the universal automaton (see [5], [6],
etc.), or automaton COM(L) (see [7], [8], etc.).
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As we said in [1], this language coincides with its mirror
image, therefore the canonical automaton for its mirror image
can be obtained replacing A, B and C for X , Y and Z
respectively. Also like [1], [9], we marked values of state-
marking functions for each state of the both non-canonical
automata in abbreviated form: e.g., for automaton on Fig. 14,
we have

ϕout(q2) = {X,Y, Z}.

(Like before, these values can be obtained by the simple
algorithms of [4, Section 3].)

Continuing the calculations, we obtain that the following
facts hold:
• state q1 of the first automaton and all three states of the

second automaton form grids;
• states q2 and q3 of the first automaton form pseudo-

grids.

VIII. CORRESPONDING LOOPS AND A
X - CYCLIC STATES

Definition 3: Let for some states

q ∈ Q , A ∈ Qπ and X ∈ Qρ

be
(A,X) ∈ Ψ(q).

Let there exist a A
X -loop of automaton BA(L) having corre-

sponding long loop of automaton

K = (Q,Σ, δ, S, F )

[1, Eq. (1)], passing q; moreover, let states
A
X and q

be corresponding in these loops. Then we shall call q by
A
X

- cyclic state. �

For the last definition, there are very important two the
following remarks.
• We do not require that this A

X -loop is simple.
• Ψ(q) may contain not only the pair (A,X). Therefore in

the considered loops, q may also correspond to another
state.

Let us consider some examples. For the same language
(9), let us first consider its automaton BA(L), Fig. 15; this is
automaton of [1, Fig. 5]. Let us also consider the “modified
basis automaton” having a long loop (2-loop), Fig. 16; this
is automaton of [1, Fig. 11]. It is simply to obtain, that the
state-marking functions of automaton on Fig. 16 are also
shown on that figure; e.g.,

ϕout
(
B
Y 1
)

= Y,

etc.

Fig. 15

Fig. 16

For the transition graph of automaton on Fig. 16, we have
no loop corresponding to the loop

B
X

b−→ A
Y

a−→ B
Y

a−→ B
X

of BA(L). However, the last automaton includes correspond-
ing long loop; that is

B
X 1

b−→ A
Y 1

a−→ B
Y 2

a−→ B
X 2

b−→ A
Y 2

a−→ B
Y 1

a−→ B
X 1 .

E.g., A
Y 2 is A

Y - cyclic state.
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Thus, we think that Definition 3 is simple. Then in
following examples, we shall not specify cyclic states.

In more complicated examples, there exist possibilities,
when, informally speaking, properties of the both considered
examples hold. For example:

• the considered automaton cannot be obtained from the
basis one by “duplicating” its loops;

• for a loop of the basis automaton, there exists corre-
sponding n-loop, but only for n > 1.

For this thing, let us consider the following examples
(Fig. 17 and 18). These automata accept the same language.
(As before, we show the values of state-marking functions.)

Consider simple loop

ν̃ = A
Y

a−→ B
X

b−→ A
Y (10)

of automaton BA(L). Automaton on Fig. 17 . . .
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. . . has corresponding 2-loop

q1
a−→ q2

b−→ q′1
a−→ q′2

b−→ q1 (11)

(and has no corresponding 1-loops). And automaton on
Fig. 18 (on this figure, we marked the added edges by the
bold font) . . .
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. . . has the same corresponding loop (11), and also corre-
sponding 1-loop

q1
a−→ q2

b−→ q1 .

But there exists examples, when (A,X) ∈ Ψ(q), but
q is not A

X - cyclic state. Let us consider the following
modification of automaton on Fig. 17 (i.e., Fig. 17′):

Fig. 17′
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(For this automaton, we added a new final state f and the
only edge

q2
a−→ f ;

all the other states and edges are the same. We can simply
obtain, that

ϕin(f) = {B} and ϕout(f) = {X}.

The automaton defines the same language.)
Let us remark, that values of ϕin and ϕout for all the

other states do not change. We show these values for states
q2 and f only; it is important to remark, that value ϕout(q2)
changes. Thus,

ϕout(q2) 3 Y

for obtained automaton, then

(B, Y ) ∈ Ψ(q2).

But it is simple to prove, that q2 is not B
Y - cyclic state.

IX. ONCE MORE ABOUT WATERLOO LANGUAGE:
LONG LOOPS OF ITS BASIS AUTOMATON

Let us consider also so-called automaton Waterloo, [10].
The figures and tables of this section are given by [2]; about
related problems, see also [5], [11], [12].

The given automaton is usually defined by the following
transition graph, Fig. 19:
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In this section, we shall denote its language by L. For it 1,
the following tables describe the equivalent basis automaton
BA(L) . . .

Tab. 4

BA(L) a b

→ A#Y E#X,E#P –
→ A#Q E#W –

B#Y F#X,F#P –
B#V F#Z,F#R –
C#U G#S B#Y,B#V
C#V G#Z,G#R –
D#W C#U H#Z,H#S
D#P C#V –

← E#X – –
E#W C#U H#Z,H#S
E#P C#V –

← F#X – –
F#Z B#Y –
F#P B#V –
F#R – D#W,D#P
G#Z A#Y –
G#R – D#W,D#P
G#S A#Q –
H#Z A#Y –
H#S A#Q –

. . . and the equivalent universal automaton COM(L):

Tab. 5

COM(L) a b

→ 1 6, 7, 8, 14 –
→ 2 8, 14 –

3 8, 9, 10, 13, 14 –
4 10, 13 –
5 10, 11, 12, 13 2, 3, 4
6 4, 5 12, 13

← 7 4, 5 12, 13
← 8 4 –
← 9 2, 3, 4 6, 14

10 2 6, 14
11 1, 2 6, 14
12 1, 2 –
13 2 –
14 4 –

See details, e.g., in [2]; and in [1, Sect. II], we gave the
agreement about of the states of basis automata, i.e., of their
notation in the tables.

On the basis of these tables, we make the following
constructions. Let us consider the loop

C
V

a−→ G
R

b−→ D
P

a−→ C
V

of the basis automaton. For the specified automata and loop,
there exist the following different corresponding 1-loops

5
a−→ 11

b−→ 6
a−→ 5 and 4

a−→ 10
b−→ 14

a−→ 4 ,

and also corresponding 2-loop

4
a−→ 10

b−→ 6
a−→ 5

a−→ 11
b−→ 14

a−→ 4 .

Let us remark, that the last loop is simple.

1 And also for 10 states of the canonical automaton of language LR:

X (the initial state) , Y , Z , U , V , W , P , Q , R , S .

We usually denote such an automaton by L̃R. But we shall not use auto-

maton L̃R in this paper (we shall use its states only).
The states of automaton COM(L) are the numbers from 1 to 14.

X. ψ-PROPER LOOPS

Definition 4: Let some

α ⊆ Qπ, β ⊆ Qρ and ψ = α× β.

Let us consider a loop ν̃ of automaton BA(L). Let there exist
a corresponding long loop ν of automaton

K = (Q,Σ, δ, S, F )

[1, Eq. (1)] containing a state q, such that

Ψ(q) = ψ.

Then we shall call ν̃ by ψ-proper loop.
For it, all such its states q (i.e., the states of the considered

type) are called (ν̃, ψ)-proper states. �

The following remark is very important, it is illustrated by
the examples considered below. Usually, state q is a priori
given, and ψ = Ψ(q). If so, then we allow both the cases

q′ = q and q′ 6= q.

Therefore, e.g., an Ψ(q)-proper loop may contain and may
not contain q.

As we said before, automaton on Fig. 17 has correspond-
ing 2-loop for loop (10). But, certainly, (10) is

a {B}×{X,Z}-proper A
Y -loop

(for this automaton).
Similarly, for automaton on Fig. 18, loop (10) is

a {B}×{X,Z}-proper A
Y -loop.

Also, for automaton on Fig. 18, the same loop is
a {B}×{X,Y, Z}-proper A

Y -loop
and

a {A,B}×{X,Y }-proper A
Y -loop.

XI.
(
A
X , q

)
-PARTIALLY COMPLETE LOOPS

The examples of the previous section lead to the need to
consider the following definition.

Definition 5: Let:
• q be A

X - cyclic state;
• ν̃ be some Ψ(q)-proper A

X -loop of BA(L) (remark that,
therefore, q is a (ν̃,Ψ(q))-proper state);

• there exists corresponding long q-loop ν of automaton
(1), which contains no other (ν̃,Ψ(q))-proper state. 2

Then we shall call ν̃ by
(A
X
, q
)
-partially complete loop. �

Let us continue to consider previous examples. For both
automata (on Fig. 17 and Fig. 18), we consider state q1 as
A
Y - cyclic state and loop (10).

Both automata on Fig. 17 and 17′ have the only cor-
responding long q1-loop, i.e., (11); besides, (11) contains
another state (i.e., q′1), which is also(

(10),Ψ(q1)
)
-proper state.

Then for these automata, loop (10) is not (AY , q1)-partially
complete loop.

And automaton on Fig. 18 has another corresponding long
q1-loop, i.e.,

q1
a−→ q2

b−→ q1 .

2 Here, we use not the terminology that we have introduced, but the usual
terms of the graph theory. Then q-loop is simply a loop which includes
state q. Notice that we do not require, that this long q-loop is 1-loop.

(See Part I of this paper about n-loops for n ≥ 1.)
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The last loop contains no other(
(10),Ψ(q1)

)
-proper states

(q1 only), therefore it is a
(
A
Y , q1

)
-partially complete loop.

Quite similarly, the considered loop (10):
• is not

(
B
X , q2

)
-partially complete loop for automaton on

Fig. 17;
• and is

(
B
X , q2

)
-partially complete loop for automaton

on Fig. 18.
However,
• it is also a

(
B
X , q2

)
-partially complete loop for automa-

ton on Fig. 17′, because for this automaton, Ψ(q2) 6=
Ψ(q′2).

XII. A
X - CYCLIC STATES

Definition 6: Let:
• q be A

X - cyclic state; each
• Ψ(q)-proper A

X -loop of automaton BA(L) be (AX , q)-
partially complete loop.

Then we shall call q by complete A
X

- cyclic state. �

The automata of previous subsections gives only some
simple examples of complete cyclic states. E.g., for automa-
ton on Fig. 17, we obtain complete cyclic states only for q3:
otherwise (i.e., for another q 6= q3 and some selected state
A
X of the equivalent basis automaton), we can specify a loop
which is not (AX , q)-partially complete; then each q 6= q3
is not (AX , q)- cyclic complete. Generally, for considered
automata, there are complete states only if there are no other
states with the same value Ψ.

Let us consider the last example, i.e., automaton on Fig. 20
(compare Fig. 18):
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This automaton also defines the same language (9). Then,
like all the examples considered before, we can use the above
automata BA(L) and COM(L), and also their loops.

For the last automaton of Fig. 20, let us consider the
loops corresponding to simple B

X -loops (or their powers) of
automaton BA(L), where B

X corresponds to q′2. The loop

B
X

b−→ A
Y

a−→ B
Y

a−→ B
X(

or, rather, B
X

b−→ A
Y

a−→ B
Y

a−→ B
X

b−→ A
Y

a−→ B
Y

a−→ B
X

)

corresponds, for example, to

q′2
b−→ q1

a−→ q1
a−→ q1

b−→ q3
a−→ q′1

a−→ q′2 .

And the loop

B
X

a−→ B
Z

b−→ A
X

b−→ C
Y

a−→ A
Y

a−→ B
X

corresponds, for example, to

q′2
a−→ q′2

b−→ q1
b−→ q3

a−→ q′1
a−→ q′2 .

Thus, both the considered loops are
{B}×{X,Y, Z}-proper B

X -loops,
because:
• the considered corresponding loops of automaton on

Fig. 20 do not contain q2;
• besides, q2 is the only other state of this automaton,

such that Ψ(q2) = Ψ(q′2).
However, there is simple to prove, that the loop

B
X

b−→ A
Y

a−→ B
X (12)

is not {B}×{X,Y, Z}-proper. Then state q′2 is not complete
B
X - cyclic one.

XIII. SETS Ψ̂(q) AND AN IMPORTANT HYPOTHESIS

The examples of the previous section lead to the need to
consider the following definition.

Definition 7:

Ψ̂(q) =
{

(A,X) ∈ Ψ(q)
∣∣ q is complete A

X - cyclic state
}
.

�

For each of the considered examples, the set Ψ̂(q) is either
empty or equal to Ψ(q). But, as we said before, we cannot
give interesting examples (i.e., when for the considered
language Ψ(q) 6= Ψ̂(q)). The informal explanation of this
fact is the following.
• Automaton BA(L) for this language has the only

strongly connected component (see [13], [14], etc.).
• Let us suppose, that there exists a pair of states

(
A
X , q

)
for which q is complete

(
A
X , q

)
- cyclic, then there exists

a loop of BA(L) which is not complete
(
A
X , q

)
- cyclic.

Let this loop be ν̂.
• Then (owing to the only strongly connected component)

we can consider ν̂ as a part of some B
X -loop for any

state B
X , where B

X may be absent in ν̂. (Because we
consider not only simple loops, see before.)

Thus, automata BA(L) have (in our examples) the only
strongly connected components. We shall not consider other
examples (i.e., automata BA(L) having 2 or more strongly
connected components) because such examples are heavy.
Omitting the detailed explanation, we already considered
the language L, for which automaton BA(L) has 4 strongly
connected components; this was the language defined by
automaton of [1, Fig. 1] (or [4, Fig. 1]). However, each of
the other automata usually considered by us (i.e., automata

L̃, L̃R, (L̃R)R, COM(L)

for its language L) has 1 strongly connected component only.
This is easily verified from the tables of [1], [4].

5
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Let us formulate the above of this section in the form of
the following hypothesis.

Hypothesis 1: For each state of any nondeterministic finite
automaton

K = (Q,Σ, δ, S, F )

[1, Eq. (1)], one of the following two equalities holds:
• either Ψ̂(q) = ∅;
• or Ψ̂(q) = Ψ(q). �

XIV. CONCLUSION. POSSIBLE DIRECTIONS
FOR THE FURTHER RESEARCH

Thus, we have considered a possible approach to clas-
sification states and loops of a nondeterministic finite au-
tomaton. Let us note once again that, that unlike [9] devoted
to an approach to the classification of languages, in this
paper we have considered various nondeterministic finite
automata defining some given language. We believe that the
description of such relationship (correspondence) between
the loops of an nondeterministic automaton and the loops
of the equivalent basis automaton makes it possible to solve
both “purely theoretical”, and “purely practical” problems of
the formal languages theory.

About “purely practical” problems, we have written in
our previous publications, in particular, in papers cited in
this one; moreover, some of them ([2], [7], [8]) are devoted
directly to the practical application of the developed algo-
rithms. We have in the first place the description of heuristic
minimization algorithms by several different criteria. We
think also, that many questions of the formal languages
theory can be considered “located between theoretical and
practical problems”.

We also are going to continue our previous publications
(see also [15]) to describe the alternative approach to solving
the star-height problem. 3 Very briefly, it can be described as
follows.

After defining the star height for an automaton, con-
sidering all the possible orders of its states and making
regular expressions for each order in the usual way, we
show, that we can construct corresponding automaton for
each regular expression, and therefore we can do this thing
for a hypothetical regular expression defining the given
regular language and having minimum possible star-height.
Thus, there exists the minimum possible value of star-height
for some hypothetical automaton defining the given regular
language; let this automaton be K. We consider not only K,
but also the concrete order τ of its states defined in [15],
corresponding to the regular expression having minimum
possible star-height.

Considering the states of K in the order τ , we obtain for
the next state one of the three following things. Either each its
loop has equivalent one which does not pass the considered
state. Or there exists some other state, which has the smaller
value of the order τ and defines the same loops. Or we can
add some edges to obtain one of previous cases.

Using a finite sequence of such steps, we obtain the au-
tomaton, which is equivalent to the given one; moreover, we
can a priory limit the number of states of such “minimum”

3 These two papers, as well as Part II presented here, may seem unrelated
to each other. However, in their sections titled “Motivation”, we briefly
described this relationship.

automaton, using the knowledge of the given language only.
Thus, this sequence of steps gives the nondeterministic finite
automaton having a priori limited number of states, defining
the given regular language and having the minimum possible
star-height.
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