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An approach to the classification
of the loops of finite automata.

Part I: Long corresponding loops

B. F. Melnikov, A. A. Melnikova

Abstract—In this paper, we considered questions of the pos-
sible classification of the states and loops of a nondeterministic
finite automaton.

For the development of algorithms for equivalent transforma-
tion of nondeterministic finite automata, we consider the basis
finite automaton for the given regular language and the paths
and loops of its transition graph. We also consider the paths
and loops of the transition graph of another nondeterministic
automaton that defines the same language. On the basis of
this, we define corresponding paths and loops of two men-
tioned automata and the questions of their classification. This
classification gives, for example, the possibilities for describing
some heuristic algorithms for minimization of nondeterministic
automata.

For the last thing, we describe the following objects. For
each state of the basis automaton, we consider the states of
the given automaton corresponding to this state of the basis
automaton, and give their classification as a function of the
loops passing through the same state of the basis automaton.
Their subset is the set of so-called including loops, on the basis
of which we determine so-called partially complete loops. For
any chosen vertex of the basic automaton, we call the vertices
of the considered nondeterministic automaton, through which
all possible partially complete loops pass, by complete cyclic
states.

At the end of the paper, we formulate the hypothesis that if
for any state of the considered nondeterministic automaton,
there exists at least one corresponding state of the basis
automaton, such that the first one is a complete cyclic state
for the second one, then all the corresponding states of the
basis automaton are such ones.

In the presented Part I of the paper, we consider the issues
related to corresponding loops of the given nondeterministic
automaton and equivalent basis automaton.

Keywords—nondeterministic finite automata, basis automa-
ton, transition graph, path, loop, algorithms for equivalent
transformation, universal automaton.

I. INTRODUCTION AND MOTIVATION

We continue the series of papers of equivalent transfor-
mation of nondeterministic finite automata (NFAs); let us
mention some of them: [1]–[7]. One (but not the only) goal
of such publications is the description of algorithms for NFA-
minimization. Speaking of this, we mean simultaneously
some following dichotomies (trichotomies, etc.).
• The search for an equivalent automaton with a minimum

number:
– of states, see [8], [9] etc.;
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– of edges, see [2], [4] etc.;
– or of the star-height value, see [10], [11] etc.

More than that, it is possible to minimize by some
mixed criteria; we are going to consider such options
for minimization in one of the following publications.

• We consider both exact and heuristic algorithms; and
among the last ones, we consider:

– “usual” heuristic algorithms;
– and so-called anytime algorithms, [12] etc.

It is important to note, that for all resulting classes of algo-
rithms, we use the same auxiliary algorithms of equivalent
transformation of NFA.

In this paper, we continue to consider the basis finite
automaton for the given regular language, and also the paths
and loops of its transition graph. We also consider the
corresponding paths of the transition graph of some NFA
that defines the given language.

Considered in this paper questions of the possible clas-
sification of the states and loops of a NFA give additional
possibilities for describing algorithms mentioned before. For
this thing, we consistently describe the following objects.
• For each state of the basis automaton, we consider the

states of the given automaton corresponding to this state
of the basic automaton. We give their classification as a
function of the loops passing through them correspond-
ing to the same state of the basis automaton.

• Then we formulate two special properties of the au-
tomaton K related to all their states; for different NFAs
defining the same regular language, these properties can
either be fulfilled or not fulfilled.

• The special subset of loops of the given automaton
corresponding to the same state of the basis automaton
is the set of so-called including loops.

• On the basis of the last definition, we determine so-
called partially complete loops.

• For any chosen vertex of the basic automaton, we call
the vertices of the considered nondeterministic automa-
ton through which all possible partially complete loops
pass, by complete cyclic states.

• At the end of the paper, we formulate the following
hypothesis. If for any state of the considered NFA,
there exists at least one corresponding state of the basic
automaton, such that the first one is a complete cyclic
state for the second one, then all the corresponding
states of the basic automaton are such ones.

These objects and hypothesis are the main subject of this
paper.
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Like [11], the parts of the subject of this paper have been
already published in Russian, see [6], [13]. However, due
to the termination of Samara State University in 2015, the
website of the electronic journal [13] is now unavailable,
and in [6], we published only a little part (i.e. the material
of Section III of this paper). Besides, this paper is the only
English presentation of this subject, and we are going to use
the objects introduced here in further publications.

II. PRELIMINARIES

The main designations used in this paper were described
in detail in [4], [6], [7]; let us repeat very briefly the most
basic and important of them.

A nondeterministic finite automaton is a 5-tuple

K = (Q,Σ, δ, S, F ), (1)

where:
• Q is the set of states of K;
• Σ is the considered alphabet;
• δ : Q × Σ → P(Q) is the transition function (P is

the set of subsets); we shall consider automata without
ε-transitions only;

• S, F ⊆ Q are the sets of initial and final states respecti-
vely.

Sometimes, to denote the transition from state q1 to state
q2 in accordance with the transition function δ, we shall use
notation

q1
a−→
δ
q2.

And like [6] (and unlike [4]), we shall not denote the
language of an automaton K by L; the details can be read
in [6], however, this paper can be read without these details.

We shall denote the canonical automata for languages L
and LR (the last one is the mirror language for L) by

L̃ = (Qπ,Σ, δπ, {sπ}, Fπ)

and
L̃R = (Qρ,Σ, δρ, {sρ}, Fρ).

Let us list the remaining notation defined for automaton (1)
in [4], [6], [7] (see the details in these papers):
• the input and output languages of state q ∈ Q, i.e.,

notation LinK (q) and LoutK (q);
• state-marking functions

ϕinK : Q→ P(Qπ) and ϕoutK : Q→ P(Qρ);

• binary relation # ⊆ Qπ ×Qρ;
• the basis automaton

BA(L) = (Q̂,Σ, δ̂, Ŝ, F̂ ); (2)

• for its state q̂ = A
X ∈ Q̂, we shall write α(q̂) = A and

β(q̂) = X .
• if for some two states q ∈ Q (of automaton (1)) and
q̂ = A

X ∈ Q̂ (of automaton (2)), we have

ϕinK (q) 3 α(q̂) and ϕoutK (q) 3 β(q̂) ,

then we shall write [q 3 q̂];
• the universal automaton COM(L), see [5], [14].

Note that in the works cited above, we also give the al-
gorithms for constructing all these objects; certainly, the
algorithms are based on the given regular language L only.

Some examples of the defined objects were given in [4],
[7]. Let us consider one of examples once again.

Let us consider the language accepted either by automaton
given on Fig. 1 . . .
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. . . or by equivalent automaton in canonical form given on
Fig. 2.
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And the following Fig. 3 and Table 1 (see also [4, Tab. 12])
show corresponding automaton L̃R . . .
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. . . and binary relation # for the considered language:

Tab. 1

# X Y Z U

A – # # –
B # – # –
C # # # #
D # # # –

We also obtain the following automaton BA(L), see Tab. 2
below. Remark that it was not considered in [4], and was
considered in [7]; we repeat the table of the last paper. Also,
for the usability, we write

A
X instead of A#X,

etc. Also we do not write symbols of sets (braces), i.e., we
write

A#X,A#Y instead of {AX ,
A
Y },

etc.
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Tab. 2
BA(L) a b

→ A#Y B#Z, B#X C#U
→ A#Z – C#Y , C#Z, C#X
← B#X – –

B#Z – D#Y , D#Z, D#X
D#Y B#Z, B#X C#U

← C#X – –
C#Y C#Z, C#X C#U
C#Z – C#Y , C#Z, C#X
C#U C#Y , C#U –

← D#X – –
D#Z – C#Y , C#Z, C#X

III. PATHS OF THE BASIS AUTOMATON
AND CORRESPONDING PATHS

OF AN EQUIVALENT AUTOMATON

In this section and following ones, we consider a “natu-
ral” correspondence between loops of some automaton (1)
defining the given regular language L and equivalent basis
automaton BA(L). As we said before, a part of the material
in this section was already published in Russian in [6].

For the considered language L and its basis automaton
BA(L) (2), let us consider the transition function δ̂ of BA(L)
as the set of its edges

∆̂ =
{
êi = (p̂i, ai, r̂i)

∣∣
p̂i, r̂i ∈ Q̂, ai ∈ Σ, δ̂(p̂i, ai) 3 r̂i, i ∈ {1, . . . , m̂}

}
(where m̂ is the number of edges of automaton (2)). Thus, we
have numbered (“colored”) the edges of automaton BA(L).

And the transition function of automaton (1) can also be
considered as the set of edges

∆ =
{
ej=(pj , aj , rj)

∣∣
pj , rj ∈ Q, aj∈Σ, δ(pj , aj)3rj , j∈{1, . . . ,m}

}
(where m is the number of edges of automaton (1)).

Let us mark each edge of automaton (1) by a set of
possible (already used) “colors”, i.e., let us consider function

Ω : ∆→ P(∆̂)

constructed in the following way. For the edge

ej = (pj , aj , rj),

we set Ω(ej) 3 êi (where i ∈ {1, . . . , m̂}) if and only if the
following conditions hold:

[pj 3 p̂i] ; aj = ai ; [rj 3 r̂i] .

Let us consider the set of paths of automaton BA(L); it is
important to remark, that we consider not only simple paths.
We can denote a path of automaton (2) by ν̂ and consider it
as the sequence

ν̂ = (êν̂1 , . . . , ê
ν̂
n̂), (3)

where n̂ is the number of its edges. Its k-th edge êk will be
denoted by

êν̂k = (p̂ν̂k, a
ν̂
k, r̂

ν̂
k)

(k ∈ {1, . . . , n̂}). Certainly, p̂ν̂k+1 = r̂ν̂k for each possible k.
For the path (3), let us define the set of ν̂-corresponding

paths of automaton K. Thus, consider a path

ν = (eν1 , . . . , e
ν
n̂) (4)

of automaton K. The value n̂ is the same as in (3) (remember
that both K and BA(L) do not contain ε-edges), and its k-th
edge is

eνk = (pνk, a
ν
k, r

ν
k)

for each possible k. Let us say, that this path corresponds to
ν̂, if for each k ∈ {1, . . . , n̂},

Ω(eνk) 3 êν̂k .

(I.e., if each edge can be “colored by the color” of the edge
of path ν̂ with the same number.) We shall also say, that for
such paths, the states p̂ν̂k and pνk are corresponding for each
k ∈ {1, . . . , n̂}.

Let us consider some examples. Consider the language
which can be defined by regular expression

(a+ ab+ ba)∗. (5)

Let us now consider the graphical description of the follow-
ing automata.
• L̃, see Fig. 4 below.

Remark that in this example, we have L = LR.
Therefore considering Fig. 4 and changing marks A,
B and C for X , Y and Z respectively, we obtain
automaton L̃R.
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• BA(L), see Fig. 5:

Fig. 5
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• The equivalent automaton K, see Fig. 6 below.
Like the agreements of [7], we write here also the values
of state-marking functions.
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For example, let us consider only two the following edges
of automaton BA(L): the “green” edge

A
Y

a−→̂
δ

B
X

and the “blue” edge

B
Y

a−→̂
δ

B
X .

Therefore (Fig. 6), the following edges of automaton K (and
only they) can be “green”:

q1
a−→
δπ

q1 , q1
a−→
δπ

q2 and q3
a−→
δπ

q1 ,

and the following edges (and only they) can be “blue”:

q1
a−→
δπ

q1 and q1
a−→
δπ

q2 .

Therefore we obtain, e.g., that the edge

q1
a−→
δπ

q1

can be “colored” in both “green” and “blue” colors (and,
maybe, in some other ones).

Let us also remark, that the set of simple loops of
automaton BA(L) includes the loop

A
Y

a−→̂
δ

B
Y

a−→̂
δ

B
X

b−→̂
δ

A
Y . (6)

We shall use this loop in some next examples.

IV. THE FIRST PROPERTY OF AN AUTOMATON

In the example considered before, for each state A
X of

BA(L) there was a corresponding state of K containing all
the corresponding loops. In other words, the following fact
held in previous example.

Property 1: For each state A
X of BA(L),

there exists a state q of K (where [q 3 A
X ]),

such that for each loop ν of state A
X ,

there exists a loop of K corresponding to ν. �

The next example shows, that there exist some automata
where Property 1 does not hold. 1 Thus, let us consider such
example briefly, the considered automaton is given on Fig. 7:

1 In the next sections, also in Part II, we shall consider some other
examples for this thing. Certainly, for each such example, K has to contain
a path corresponding to ν.
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Remark that we can think here, that automaton on Fig. 7 is
simultaneously:
• L̃;
• (L̃R)R (changing mark A for X);
• BA(L) (changing mark A for A

X ).
This automaton defines the whole language Σ∗ (we can think
that Σ = {a, b}). And both the states of equivalent automaton
K on Fig. 8 . . .
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. . . have the same values of ϕinK and ϕoutK (i.e., {A} and
{B} respectively), but neither of states of K has both loops
corresponding to the loops of BA(L) with labels a and b.

V. LONG CORRESPONDING LOOPS

Let us define long loops. Firstly, let a path (3) defined in
Section III be the loop. Then let us define its n-loop (i.e.,
long loop) for each n ≥ 1 in the usual way.

Definition 1: For n ≥ 1, the n-loop of the loop ν̂ =

(êν̂1 , . . . , ê
ν̂
n̂) is defined by

ν̂n = (êν̂
n

1 , . . . , ê
ν̂n

n·n̂), (7)

where for each possible i (i.e., i ∈ {1, . . . , (n−1)·ν̂}) we
think that

êν̂
n

i = êν̂
n

i+n. �

For this definition, let us remark the following things.
Firstly,

r̂ν̂
n

n·n̂ = p̂ν̂
n

1 .

Secondly, we used notation ê, ν̂, etc; but we can assume, that
we defined such long loops not only for basis automaton,
but also for each automaton (for example, for the given
automaton (1)).

For such long loops, we consider corresponding paths of
automaton (1) as we did in Section III. We shall call such
path

ν = (eν1, . . . , e
ν
n·n̂), (8)

by “long n-path” of automaton (1) corresponding to loop (3)
of automaton (2).

By [15], path (8) is a loop if rνn·n̂ = pν1 ; then we shall call
it by (long) n-loop. (In fact, we have already considered
some examples of such long loops in previous section.)

Let us consider once again regular language defined by (5)
and its automaton BA(L) on Fig. 5. We describe the possible
method of duplicating the loop. Let us remark in advance,
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that we can simply consider Fig. 11 only (i.e., consider it
as the given automaton), proving the equivalence of that
automaton and automaton on Fig. 9.

Fig. 9

(Remark also, that on the three following figures consid-
ered in this section, the right numbers mean indices: e.g., the
notation

A
Y 1

marking a state means the mark(
A
Y

)
1
.

Certainly, the values of state-marking functions of such states
are {A} and {Y }; such facts also can be simply proved.)

Fig. 10

Thus, let us add the duplicate of the loop (6); we obtain
automaton on Fig. 9. Then using a simple operation (see
Fig. 10, heavy and deleted lines there), we change:

• edge
(
A
Y

)
1

a−→
(
B
Y

)
1

for edge
(
A
Y

)
1

a−→
(
B
Y

)
2

(remark that we cannot use the notation δ̂ for transition
function here, therefore we simply omit the name of
this function);

• edge
(
A
Y

)
2

a−→
(
B
Y

)
2

for edge
(
A
Y

)
2

a−→
(
B
Y

)
1

,

and obtain automaton on Fig. 11. (We think, that there is no
need to describe such operation detailed.)

Fig. 11

The last automaton has, e.g., the long loop(
A
Y

)
1

a−→
(
B
Y

)
2

a−→
(
B
X

)
2

b−→
(
A
Y

)
2

a−→
(
B
Y

)
1

a−→
(
B
X

)
1

b−→
(
A
Y

)
1

corresponding to the long loop
A
Y

a−→̂
δ

B
Y

a−→̂
δ

B
X

a−→̂
δ

A
Y

a−→̂
δ

B
Y

a−→̂
δ

B
X

a−→̂
δ

A
Y

of the given basis automaton BA(L).
We shall continue to consider the last automaton in Part II

of this paper.

VI. THE SECOND PROPERTY OF AN AUTOMATON

Let us complicate the condition formulated in Section III.
Thus, in the examples considered before (automata on all the
figures considered before, excepting Fig. 8), the following
condition held: for each state A

X of BA(L), there was a
corresponding state of K containing all the corresponding
long loops. (Recall that before the similar condition, i.e.
Property 1, for corresponding loops only, not for long loops.)
In other words, the following fact held in all previous
examples of Section V.

Property 2: For each state A
X of BA(L),

there exists a state q of K (where [q 3 A
X ]),
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such that for each loop ν of state A
X ,

there exists a number n ≥ 1,
such that there exists a q-loop corresponding to ν n. �

However. the considered before automaton on Fig. 8
shows, that there exist some automata where this fact also
does not hold. (As before, K contains a path corresponding
to ν n for each n ≥ 1.) And the following simplest Table 3
shows all the possibilities of fulfilling or not fulfilling the
formulated properties for NFAs and corresponding examples
of the automata considered before.

Tab. 3

Automaton Property 1 Property 2
Fig. 7 + +

Fig. 11 − +
Fig. 8 − −

In the following proposition, we consider the first of the
properties of corresponding loops.

Proposition 1: For each loop of automaton BA(L) there
exists n ≥ 1, and for it there exists a corresponding n-loop
of automaton K.

(Notice that we do not require that the given loop of
automaton BA(L) is simple.)

Proof. Consider a loop

ν̂ =
(
êν̂1 , . . . , ê

ν̂
n̂

)
of automaton BA(L), starting and finishing in state

p̂ν̂
n

1 = r̂ν̂
n

n̂ .

Let v be its label (v 6= ε, because BA(L) has no ε-edges),
let also

u ∈ LinBA(L)

(
p̂ν̂

n

1

)
and w ∈ LoutBA(L)

(
r̂ν̂
n

n̂

)
;

remark that uviw ∈ L for each i ≥ 0.
Let n be greater than the number of states of automaton

K. Consider word

x = uvnw ∈ L;

because automaton BA(L) is unambiguous, it accepts x
passing (n times) loop ν̂. Automaton K is equivalent (i.e.,
it defines L), then it accepts x.

Consider one of possible paths for automaton K defining
x; by definition, some its sub-paths correspond to considered
loop ν̂ of automaton BA(L). For this path of K, consider the
set of states passed before reading the first letter of v in the
word x; we have n such cases of reading v. Because the
number of states of automaton K is less than n, we obtain
the coincidence for at least 2 states of this set, and, therefore,
the existence of corresponding long loop. �

We shall continue to consider long corresponding loops in
Part II of this paper. Besides, we shall consider there some
other properties of the states and loops of an arbitrary finite
automaton, completing our approach to their classification.
We also shall define so-called including loops, partially
complete loops and complete cyclic states, consider some
their properties and formulate an important hypothesis about

them; in Introduction, we already gave brief information on
these objects.

Remark in the conclusion of Part I, that in [6] we also
considered cases, when a NFA defines not the given language
(i.e., language of BA(L) according to the terminology used
here), but some its own subset; in both parts of this paper,
we shall not consider these issues.
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