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Abstract- In several areas of mathematical

physics and engineering sciences, integral

transforms and fractional calculus operators

play an important role from the application

point of view. A remarkably large number

of integral transforms as well as fractional

integral and derivative formulas involving

various special functions have been inves-

tigated by many authors. This paper is a

short portrayal, concerning the utilization

of Riemann-Liouville fractional operators on

generalized Bessel-Maitland function. The

main results demonstrate how the operators

affects the parameters i.e., the Riemann-

Liouville fractional integral operator and dif-

ferential operator involving Bessel-Maitland

function are expressed in terms of Mittag-

Leffler functions. The main results can be

applied to obtain certain special cases by

specialising the parameters.
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1 Introduction

1.1 Bessel-Maitland function

In Applied sciences, several vital functions are out-

lined via improper integrals or series (or finite prod-

ucts). The general name of these vital functions is

aware of as special functions. In special functions,

one amongst the foremost vital function (Bessel

function) is widely utilized in physics and engineer-

ing, they are of interest to physicists and engineers

in addition as man of science. In neoteric years a

remarkably sizable amount of integral formulas in-

volving a range of special functions are developed

by several authors (see [1],[5]-[8],[14])

For our motive, we start by retracing certain famous

functions and supra works. The Bessel-Maitland

function Jµν (z) outlined by the following series il-

lustration Merichev [9] as follows:

Jµν (z) =

∞∑
n=0

(−z)n

Γ(ν + µn+ 1)n!
, µ > 0; z ∈ C

(1.1)

The generalized Bessel function of the form Jµν,σ(z)

is defined by Jain and Agarwal [11] as follows:

Jµν,σ(z) =

∞∑
n=0

(−1)n
(
z
2

)ν+2σ+2n

Γ(ν + σ + µn+ 1)Γ(σ + n+ 1)

(1.2)

where z ∈ C \ (−∞, 0], µ > 0, ν, σ ∈ C.
Further, generalization of the generalized Bessel-

Maitland function, Jµ,γν,q (z) defined by Pathak [10]

as follows:

Jµ,γν,q (z) =

∞∑
n=0

(γ)qn(−z)n

Γ(ν + µn+ 1)n!
(1.3)

where µ, ν, γ ∈ C,<(µ) ≥ 0,<(ν) ≥ −1,<(γ) ≥
0 and q ∈ (0, 1)∪N. From the generalization of the

Bessel-Maitland function (1.3), it is possible to find

find relations between Bessel-Maitland function and

Mittag Leffler function.

If ν is replaced by ν − 1 and z by −z, (1.3) reduces

to

Jµ,γν−1,q(−z) = Eγ,qµ,ν(z) (1.4)

where µ, ν, γ ∈ C;<(µ) > 0,<(ν) > 0,<(γ) > 0; q ∈
(0, 1) ∪ N and Eγ,qµ,ν(z) denotes generalized Mittag-

Leffler function, was given by Shukla and Prajapati

[3]

If q = 1,ν is replaced by ν − 1 and z by −z, (1.3)

reduces to

Jµ,γν−1,1(−z) = Eγµ,ν(z) (1.5)
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where µ, ν, γ ∈ C;<(µ) > 0,<(ν) > 0,<(γ) > 0 and

Eγµ,ν(z) was introduced by Prabhakar [13]

If q = 1, γ = 1, ν is replaced by ν − 1 and z by −z,
(1.3) reduces to

Jµ,1ν−1,1(−z) = Eµ,ν(z) (1.6)

where µ ∈ C, <(µ) > 0,<(ν) > 0, was studied by

Wiman [4]

1.2 Fractional derivative and inte-
gral operators

Differentiation and integration of fractional or-

der are traditionally defined by the right sided

Riemann-Liouville fractional integral operator Iµa+
and left sided Riemann-Liouville fractional inte-

gral operator Iµa− and the corresponding Riemann-

Liouville fractional derivative operator Dµ
a+ and

Dµ
a− as follows [12, p-33(2.17,2.18),p-37(2.32,2.33)]

(
Iµa+f

)
(x) =

1

Γ(µ)

∫ x

a

f(t)

(x− t)1−µ
dt, (1.7)

where (x > a;<(µ) > 0).

(
Iµa−f

)
(x) =

1

Γ(µ)

∫ a

x

f(t)

(t− x)1−µ
dt, (1.8)

where (x < a;<(µ) > 0).

(
Dµ
a+f

)
(x) =

dn

dxn
(
In−µa+ f

)
(x), (1.9)

where (<(µ) ≥ 0, n = 1 + [<(µ)]).

(
Dµ
a−f

)
(x) = (−1)n

dn

dxn
(
In−µa+ f

)
(x), (1.10)

where (<(µ) ≥ 0, n = 1 + [<(µ)]).

In above equations the function f is locally inte-

grable, <(µ) denotes real part of the complex num-

ber and[<(µ)] means greatest integer in <(µ).

We will need the following result [2, p-10(13)]∫ a

b

(a− t)β−1(t− b)α−1dt = (a− b)α+β−1B(α, β),

(1.11)

where (<(α) > 0,<(β) > 0, b < a)

2 Fractional Integral of gener-
alized Bessel-Maitland func-
tion

In this section we are going to discuss the result

concerning the Bessel-Maitland function under the

Riemann-Liouville fractional integral operator.

Theorem 2.1. The following integral formula

holds : (
Iλa+(t− a)νJµ,γν,q (ω(t− a)µ)

)
(x)

= (x− a)ν+λJµ,γν+λ,q(ω(x− a)µ) (2.1)

where x > a;ω, λ, µ, ν, γ ∈ C; q ∈ (0, 1) ∪ N;<(µ) ≥
0;<(γ) ≥ 0;<(ν) ≥ −1;<(λ) > 0

Proof. By using (1.3) and the definition of inte-

gral operator in (1.7) and interchanging integral and

summation, which is verified under uniform conver-

gence of series, we get(
Iλa+(t− a)νJµ,γν,q (ω(t− a)µ)

)
(x) =

1

Γ(λ)

×
∞∑
m=0

(γ)qn(−ω)m

m!Γ(ν + µm+ 1)

∫ x

a

(x−t)λ−1(t−a)ν+µmdt

Now using (1.11), we get(
Iλa+(t− a)νJµ,γν,q (ω(t− a)µ)

)
(x) = (x− a)ν+λ

×
∞∑
m=0

(γ)qn(−ω)m(x− a)µm

Γ(ν + λ+ µm+ 1)

The required result is obtained by using (1.3).

Corollary 2.2. If ν is replaced by ν − 1 and

ω(t − a)µ by −ω(t − a)µ in L.H.S of (2.1), then

using (1.4), we get :(
Iλa+(t− a)ν−1Jµ,γν−1,q(−ω(t− a)µ)

)
(x) = (x−a)ν+λ−1

×Eγ,qµ,ν+λ (ω(x− a)µ)

Corollary 2.3. If q=1, ν is replaced by ν − 1 and

ω(t−a)µ by −ω(t−a)µ in L.H.S of (2.1), then using

(1.5), we get :(
Iλa+(t− a)ν−1Jµ,γν−1,1(−ω(t− a)µ)

)
(x) = (x−a)ν+λ−1

×Eγµ,ν+λ (ω(x− a)µ)
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Corollary 2.4. If q=1, γ = 1,ν is replaced by ν−1

and ω(t−a)µ by −ω(t−a)µ in L.H.S of (2.1), then

using (1.6), we get :(
Iλa+(t− a)ν−1Jµ,1ν−1,1(−ω(t− a)µ)

)
(x) = (x−a)ν+λ−1

×Eµ,ν+λ (ω(x− a)µ)

In the above corollaries we must have

x > a;ω, λ, µ, ν, γ ∈ C; q ∈ (0, 1) ∪ N;

<(µ) > 0;<(γ) > 0;<(ν) > 0;<(λ) > 0

.

Theorem 2.5. The following integral formula

holds :(
Iλa−(a− t)νJµ,γν,q (ω(a− t)µ)

)
(x) = (a− x)ν+λ

×Jµ,γν+λ,q(ω(a− x)µ) (2.2)

where x < a;ω, λ, µ, ν, γ ∈ C; q ∈ (0, 1) ∪ N;<(µ) ≥
0;<(γ) ≥ 0;<(ν) ≥ −1;<(λ) > 0

Proof. The above result can be obtained on similar

steps as in Theorem 2.1 .

Corollary 2.6. If ν is replaced by ν − 1 and

ω(t − a)µ by −ω(t − a)µ in L.H.S of (2.2), then

using (1.4), we get :(
Iλa−(a− t)ν−1Jµ,γν−1,q(−ω(a− t)µ)

)
(x)

= (a− x)ν+λ−1Eγ,qµ,ν+λ (ω(a− x)µ)

Corollary 2.7. If q=1, ν is replaced by ν − 1 and

ω(t−a)µ by −ω(t−a)µ in L.H.S of (2.2), then using

(1.5), we get :(
Iλa−(a− t)ν−1Jµ,γν−1,1(−ω(a− t)µ)

)
(x)

= (a− x)ν+λ−1Eγµ,ν+λ (ω(a− x)µ)

Corollary 2.8. If q=1, γ = 1,ν is replaced by ν−1

and ω(t−a)µ by −ω(t−a)µ in L.H.S of (2.2), then

using (1.6), we get :(
Iλa−(a− t)ν−1Jµ,1ν−1,1(−ω(a− t)µ)

)
(x)

= (a− x)ν+λ−1Eµ,ν+λ (ω(a− x)µ)

In the above corollaries we must have

x < a;ω, λ, µ, ν, γ ∈ C; q ∈ (0, 1) ∪ N;

<(µ) > 0;<(γ) > 0;<(ν) > 0;<(λ) > 0

.

3 Fractional Derivative of
generalized Bessel-Maitland
function

In this section we are going to discuss the results

concerning the Bessel-Maitland function under the

Riemann-Liouville fractional differential operator.

Theorem 3.1. The following integral formula

holds(
Dλ
a+(t− a)νJµ,γν,q (ω(t− a)µ)

)
(x) = (x− a)ν−λ

×Jµ,γν−λ,q(ω(x− a)µ) (3.1)

where x > a;ω, λ, µ, ν, γ ∈ C; q ∈ (0, 1) ∪ N;<(µ) ≥
0;<(γ) ≥ 0;<(ν) ≥ −1;<(λ) ≥ 0

Proof. By using (1.3) and the definition of inte-

gral operator in (1.9) and interchanging integral and

summation, which is verified under uniform conver-

gence of series, we get

(
Dλ
a+(t− a)νJµ,γν,q (ω(t− a)µ)

)
(x) =

1

Γ(n− λ)

×
∞∑
m=0

(γ)qn(−ω)m

m!Γ(ν + µm+ 1)

dn

dxn

∫ x

a

(x−t)n−λ−1(t−a)ν+µmdt

Now using (1.11), we get(
Dλ
a+(t− a)νJµ,γν,q (ω(t− a)µ)

)
(x)

=

∞∑
m=0

(γ)qm(−ω)m

m!Γ(ν − λ+ µm+ n+ 1)

dn

dxn
(x−a)ν−λ+n+µm

Now using

dn

dxn
(xa) =

Γ(a+ 1)

Γ(a+ 1−m)
xa−m, where <(a) > 0 we get

(
Dλ
a+(t− a)νJµ,γν,q (ω(t− a)µ)

)
(x)

= (x− a)ν−λ
∞∑
m=0

(γ)qn(−ω)m(x− a)µm

Γ(ν − λ+ µm+ 1)

which upon using (1.3) gives the required result

.
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Corollary 3.2. If ν is replaced by ν − 1 and

ω(t − a)µ by −ω(t − a)µ in L.H.S of (3.1), then

using (1.4), we get :(
Dλ
a+(t− a)ν−1Jµ,γν−1,q(−ω(t− a)µ)

)
(x)

= (x− a)ν−λ−1Eγ,qµ,ν−λ (ω(x− a)µ)

Corollary 3.3. If q=1, ν is replaced by ν − 1 and

ω(t−a)µ by −ω(t−a)µ in L.H.S of (3.1), then using

(1.5), we get :(
Dλ
a+(t− a)ν−1Jµ,γν−1,1(−ω(t− a)µ)

)
(x)

= (x− a)ν−λ−1Eγµ,ν−λ (ω(x− a)µ)

Corollary 3.4. If q=1, γ = 1,ν is replaced by ν−1

and ω(t−a)µ by −ω(t−a)µ in L.H.S of (3.1), then

using (1.6), we get :(
Dλ
a+(t− a)ν−1Jµ,1ν−1,1(−ω(t− a)µ)

)
(x)

= (x− a)ν−λ−1Eµ,ν−λ (ω(x− a)µ)

In the above corollaries we must have

x > a;ω, λ, µ, ν, γ ∈ C; q ∈ (0, 1) ∪ N;

<(µ) > 0;<(γ) > 0;<(ν) > 0;<(λ) > 0

.

Theorem 3.5. The following integral formula

holds(
Dλ
a−(a− t)νJµ,γν,q (ω(a− t)µ)

)
(x) = (a− x)ν−λ

×Jµ,γν−λ,q(ω(a− x)µ) (3.2)

where x < a;ω, λ, µ, ν, γ ∈ C; q ∈ (0, 1) ∪ N;<(µ) ≥
0;<(γ) ≥ 0;<(ν) ≥ −1;<(λ) ≥ 0

Proof. The above result can be proved on similar

steps as in Theorem 3.1 .

Corollary 3.6. If ν is replaced by ν − 1 and

ω(t − a)µ by −ω(t − a)µ in L.H.S of (3.2), then

using (1.4), we get :(
Dλ
a−(a− t)ν−1Jµ,γν−1,q(−ω(a− t)µ)

)
(x)

= (a− x)ν−λ−1Eγ,qµ,ν−λ (ω(a− x)µ)

Corollary 3.7. If q=1, ν is replaced by ν − 1 and

ω(t−a)µ by −ω(t−a)µ in L.H.S of (3.2), then using

(1.5), we get :(
Dλ
a−(a− t)ν−1Jµ,γν−1,1(−ω(a− t)µ)

)
(x)

= (a− x)ν−λ−1Eγµ,ν−λ (ω(a− x)µ)

Corollary 3.8. If q=1, γ = 1,ν is replaced by ν−1

and ω(t−a)µ by −ω(t−a)µ in L.H.S of (3.2), then

using (1.6), we get :(
Dλ
a−(a− t)ν−1Jµ,1ν−1,1(−ω(a− t)µ)

)
(x)

= (a− x)ν−λ−1Eµ,ν−λ (ω(a− x)µ)

In the above corollaries we must have

x > a;ω, λ, µ, ν, γ ∈ C; q ∈ (0, 1) ∪ N;

<(µ) > 0;<(γ) > 0;<(ν) > 0;<(λ) > 0

.
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