
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 7, 2018

The star-height of a finite automaton
and some related questions

B. F. Melnikov

Abstract—The paper is related to the star-height for non-
deterministic finite automata, not for the star-height problem
for regular languages. We describe an alternative proof of
Kleene’s theorem, and then our version of the reduction of
some problems related to the star-height to nondeterministic
finite automata. For a given regular language, the corresponding
finite automaton is constructed; the method we are considering
has the property that the reverse construction gives the original
regular expression.

The publication of this not-so-complicated problem has two
goals, the both are related to the future development of the topic
under consideration. First, we assume the future development of
the topic with the aim of describing a similar approach for gen-
eralized regular expressions. Secondly, another generalization
is proposed, namely, consideration of the structures we describe
for the so-called extended automata. Thus, the material of this
article is necessary for the definition of extended generalized
pseudo-automata, which the author proposes to cite in the next
publication.

Keywords—nondeterministic finite automata, regular lan-
guages, Kleene’s theorem, star-height problem.

I. INTRODUCTION AND MOTIVATION

This paper summarizes some previous publications of the
author. Among these publications, we note papers [1], [2],
[3] (in chronological order).

In [1], only some schemes of algorithms were published.
In [3], an algorithm was given that relates Kleene’s the-

orem and the star-height. This material has for now been
published in Russian only; besides, due to the termination of
Samara State University in 2015, the website of the journal
is now unavailable.

In the current paper, the author gives the English version
of [3], where also some noted misprints are corrected, and
for some statements simpler proofs are given.

And the paper [2] was published long ago, it contained
another algorithm that also describes the connection between
Kleene’s theorem and the star-height.

The current paper is related to the star-height for nonde-
terministic finite automata, its subject is practically unrelated
to much more complex problems, i.e., to both “ordinary”
star-height problem and generalized star-height problem for
regular languages.

For these problems for the languages, let us only make
some remarks. The first of mentioned problems, i.e., the
“ordinary” star-height problem, was set in 1963 in [4] and
solved in 1988 in [5]; in [6], however, this solution was called
“extremely difficult”.

In 2005, there was published the much more understand-
able solution of D. Kirsten, see [7]. In 2015, this solution

Received May 12, 2018.
Boris F. Melnikov, Russian State Social University (email: bf-melnikov@

yandex.ru).

was some improved using an approach of the game theory,
see [8]. And unlike the previous comment, the last proof was
called “elegant”. Although it does improve the understanding
of the proof of D. Kirsten, the number of automata being
examined due to this “elegance” does not decrease.

The second of these mentioned problems is the generalized
star-height problem. For now, it is unknown the answer
to the question whether or not this problem is decidable.
The author also does not know significant papers on this
subject published after [9] (1992). The connection between
the generalized star-height problem and generalized pseudo-
automata (see [10] for the last formalism) is to be considered
in one of the following publications.

In this paper we describe, firstly, an alternative proof of
Kleene’s theorem, and secondly, our version of the reduction
of some problems related to the star-height to nondeterminis-
tic finite automata. Both these topics represent an alternative
to the particular version of the reduction proposed back in
1963 in the above-mentioned paper [4]. As we already noted
above, the subject of this paper is practically unrelated to
the complex star-height problems. However, the publication
of this not-so-complicated problem has two goals, the both
ones are related to the future development of the topic under
consideration. First, we assume the future development of
the topic with the aim of describing a similar approach for
generalized regular expressions (see [11] etc.) and general-
ized automata (see [10]). Secondly, another generalization is
proposed; namely, we shall describe the consideration of our
structures for so-called extended automata (see [12]) and,
accordingly, extended pseudo-automata. Let us note, that all
concepts needed for such extensions are present in this paper.

The structure of this paper is as follows. Section II briefly
describes the used notation. In Section III, we consider a
special version of the proof of Kleene’s theorem.

In Section IV, we define the main object of this paper, i.e.,
the star-height of a finite automaton. This definition is built
on the basis of its transition graph only, and is not associated
with the marks of its edges.

In Section V, for a given regular language, the correspond-
ing finite automaton is constructed. Of course, this problem
was solved more than 60 years ago, but the method we are
considering has the property that the “reverse construction”
gives the original regular expression.

In Conclusion (Section VI), we formulate the directions
for the further research.

II. PRELIMINARIES

We shall not describe in detail the notation used in this
paper; they are exactly the same as those used in [13]. Like

1

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 7, 2018

there, the “main” automaton under consideration will be
denoted by

K = (Q,Σ, δ, S, F). (1)

We shall use the classical definition of the star-height of
the regular expression, see [7], [11]. We define it (denoting
by SH(r) for expression r) by the induction in the following
way:
• SH(∅) = SH(∅∗) = SH(a) = 0 for each a ∈ Σ;
• for each regular expressions r and s, we set

SH((r + s)) = SH((r · s)) = max(SH(r),SH(s)) ;

• for each regular expression r (where r 6= ∅), we set

SH((r∗)) = SH(r) + 1.

Remark that sometimes, another definition is considered:
SH(∅∗) is defined as 1. There is easy to prove, that such
difference is important (i.e., two different definitions for
expressions give two different values of the star-height of
the regular languages) for some finite languages only.

Besides, some new notation will be described as necessary;
most of these notations are associated with paths in the
transition graph of the considered automaton.

III. A SPECIAL VERSION OF THE PROOF
OF KLEENE’S THEOREM

Let us consider a special version of the proof of Kleene’s
theorem. For the given automaton (1), let us consider some
injective “ordering” function

τ : Q → R+
.

We shall also write, e.g., p < r meaning τ(p) < τ(r); also
we shall use notation “max”, meaning

max(p, r) =

{
p, if τ(p) ≥ τ(r)

r, if τ(p) < τ(r) ,

etc. Let us fix K and τ in this section.
For some states q, p, r ∈ Q, where p ≥ q and r ≥ q, let

us consider some simple path from p to r, whose sequence
of vertices is

(p, q1, q2, . . . , qs, r),

such that

s ≥ 0 and (∀i ∈ {1, . . . , s}) (qi > q).

(We allow p = r. In this case, i.e., if p = r, it is a simple
loop.) We shall denote the set of all such paths by ∆q(p, r).

We also set

∆q = { q′ is a state of a path of ∆q(q, q) and q′ 6= q } .

Some more notation:
• if ∆q(p, r) 6= ∅, then we shall write Vq(p, r);
• otherwise, Vq(p, r);
• if both Vq(p, r) and Vq(r, p), then we shall write

Wq(p, r).
For each states s, f ∈ Q (we allow s = f), we shall

consider automaton Ks→f , defining as follows:

Ks→f = (Qs→f ,Σ, δs→f , {s}, {f}), (2)

where

Qs→f = {s, f} ∪Qsf ,
Qsf = { q ∈ Q | q > max(s, f) } ,

and δs→f is constructed in the following way:

p
a−→

δs→f

r

if and only if

p
a−→
δ
r, p ∈ {s} ∪Qsf , r ∈ {f} ∪Qsf .

We shall construct regular expressions corresponding lan-
guages of automata of the type (2) by the induction on the
value τ(min(s, f)). We shall denote these expressions by
ρs→f ; if s = f , we shall denote the automaton and the
expression by Ks and ρs.

(Let us remark, that we consider only expressions, ob-
tained in the way described below. Certainly, each automaton
has also infinitely many other corresponding regular expres-
sions. But we shall not consider them in this section.)

Thus, let us consider the induction formulated before. Its
basis is the following. If

min(s, f) = qmax = max({ q | q ∈ Q }),

then automaton (2) (i.e., Kqmax
) defines the language, defined

also by regular expression

ρqmax =
({

a ∈ Σ | qmax
a−→ qmax

})∗
; (3)

remark that anyway ρqmax
3 ε.

Step of induction. If s 6= f , then we write expression
defining language of automaton Ks→f in the following way:

ρs→f =
{
a ∈ Σ | s a−→ f

}
+

⋃
q>max(s,f)

ρs→q ·ρq ·ρq→f (4)

(for expression, ∪ symbolizes +’s). And if s = f , then we
write expression defining language of automaton Ks in the
following way:

ρs =

({
a ∈ Σ | s a−→ s

}
+
⋃
q>s

ρs→q · ρq · ρq→s
)∗

. (5)

By the hypothesis of inductions, all the expressions of the
right parts of (4) and (5) are already constructed.

For some pair s ∈ S and f ∈ F , denote

Ls→f = L(Ks→f) +
⋃

q<min(s,f)

L(Ks→q) · L(Kq) · L(Kq→f).

Then we can write language of the given automaton (1) (i.e.,
L(K)) in the following way:

L(K) =
⋃

s∈S, f∈F

L(Ks) · Ls→f · L(Kf).

Therefore, the corresponding regular expression is⋃
s∈S, f∈F

ρs ·
(
ρs→f +

⋃
q<min(s,f)

ρs→q · ρq · ρq→f
)
· ρf .

(6)

We shall everywhere (i.e., both in this paper and in the
future) use this formula (6). Although we note, that there
also exists a simpler expression⋃

s∈S, f∈F

(
ρs ·

(⋃
q∈Q

ρs→q · ρq · ρq→f
)
· ρf
)

;

2

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 7, 2018

where, for instance, the language defined by ρs→f is a subset
of the language defined by⋃

q∈Q
ρs→q · ρq · ρq→f .

However, the last record, as is easy to verify, usually gives a
much larger number of components (“terms”) in the obtained
regular expression.

IV. THE STAR-HEIGHT OF A FINITE AUTOMATON

In this section, we define the main object of this paper,
i.e., the star-height of a finite automaton It is important to
note that this definition is built on the basis of its transition
graph only, and is not associated with the marks of its edges,
i.e., the letters.

Firstly, let us consider some propositions; they are simply
the corollaries of the given before definitions of regular
expressions ρ (i.e., (3)–(5)).

Proposition 1: SH(ρqmax
) ≤ 1. �

Proposition 2:

SH(ρqs→f
) = max

q∈∆max(s,f)(s,f)
SH(ρq) ≤ max

q∈Qs→f

SH(ρq). �

Proposition 3: If ∆s 6= ∅, then

SH(ρs) = max
q∈∆s

SH(ρq)+1 ≤ max
q>s
SH(ρq)+1. �

In previous section, we fixed K and τ . Then below, the
obtained regular expression defining L(K) for the ordering
function τ (i.e., (6)) will be denoted below by R(K, τ).

Let for automaton (1), its set Q consists of n states. We are
able to consider n! different injective functions τ (because
for each pair of states q, r ∈ Q, only the value of predicate
τ(q) < τ(r) is important). These n! different functions have,
generally speaking, different regular expressions defined by
(4) and (5).

Definition 1: The star-height of automaton (1) is defined
in the following way:

SH(K) = min
τ∈T
SH(R(K, τ)),

where T is the set of all the bijective functions of the type
τ : Q→ {1, . . . , n}. �

It is important to remark, that for defining SH(K), we
have used exactly the way of constructing regular expres-
sions, which was given in previous subsection. (Certainly,
there exist other ways of constructing regular expressions by
the given automaton.)

Let us consider a simple well-known example; the tran-
sition graph for the language of regular expression (ab∗c)∗

is given on Fig. 1. (The agreement on the use of single
and double circles as a designation of states of the transition
graph was given in [10].)

?

��
��
��
��
q1

?

-a

� c ��
��
��
��
q2 ����

I
b

Fig. 1

To determine the star-height of this automaton, we have
to consider 2 functions τ ; let us call them τ1 and τ2. For the
function {

τ1(q1) = 1, τ1(q2) = 2
}
,

we obtain, using (3)–(6) and some simplest equivalent trans-
formations ([14] etc.), the following expressions:

ρq2 = b∗, ρq2→q1 = {c}, ρq1→q2 = {a}

and
ρq1 = (ab∗c)∗,

and, therefore,

R(K, τ1) = (ab∗c)∗ · (ab∗c)∗ · (ab∗c)∗. (7)

Similarly, considering the function{
τ2(q1) = 2, τ2(q2) = 1

}
,

we obtain the following expressions:

ρq1 = {ε}, ρq1→q2 = {a}, ρq2→q1 = {c}

and
ρq2 = (ca+ b)∗,

and, therefore,

R(K, τ2) = {ε} ·
(
{ε}+ a · (ca+ b)∗ · c

)
· {ε}. (8)

Counting the star-height of regular expressions (7) and (8),
we obtain, that the star-height of considered automaton is
equal to 1.

Proposition 4: For automaton without useless and inac-
cessible states and given ordering function τ ,

SH
(
R(K, τ)

)
= max

q∈Q
SH(ρq). �

V. THE FINITE AUTOMATON FOR THE GIVEN LANGUAGE

In this section, for a given regular language, the corre-
sponding finite automaton is constructed. As we already said,
this problem was solved more than 60 years ago, but the
method we are considering has the property that the “reverse
construction” (that is, the standard algorithm for constructing
a regular expression based on a given finite automaton) gives
(after some simplest equivalent transformation) exactly the
original regular expression.

We shall not formulate these transformations strictly, since
this is simply not necessary. See, e.g., the example before,
where we have obtained 3 factors (ab∗c)∗ in (7), but we can
consider, e.g., τ = (ab∗c)∗.

Thus, we shall formulate the main proposition of the paper
as follows.

Proposition 5: For each regular expression r, there exists
automaton

Kr = (Qr,Σ, δr, Sr, Fr)

and function τr for its states, such that:
(r1) L(Kr) = L(r);
(r2) SH(Kr) ≤ SH(R(Kr, τr)) = SH(r).
(Let us note once again, that we do not assert, that r =
R(K, τ).)

Proof. We shall prove this proposition in the usual way,
i.e., considering the usual process of constructing the given
regular expression; at the same time, we shall construct the
equivalent automaton and corresponding function τ .

In addition to conditions (r1) and (r2) formulated before,
we shall construct automata (let it be Kr) and corresponding
function (let τr), for which two additional requirements are
also met:

3

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 7, 2018

(r3) there exists a value Tr ∈ R+, such that:
– τ(s) < Tr for each s ∈ Sr;
– τ(q) > Tr for each q /∈ Sr;

(r4) there is no edge of the type

s1
a−→
δr

s2,

where s1, s2 ∈ Sr.
Possible automata for the regular expressions ∅, ε and

a (for each a ∈ Σ) are given on Fig. 2–4 respectively.
It is evident, that for each of these expressions, we have
SH(Kr) = 0. Conditions (r3) and (r4) also hold.

-��
��
��
��
s∅

��
��
��
��
f∅ -

Fig. 2

-��
��
��
��
sε -

Fig. 3

-��
��
��
��
sa

?

a

��
��
��
��
fa -

Fig. 4

Now, let us suppose that we already have automata cor-
responding to given regular expressions p and r; we mean
that we suppose, that already have automata, which define
the same regular languages and have the same star-height.
Certainly, we can also suppose that we also have functions τ
for these automata obtaining regular expressions which star-
height is equal to the star-height of the given expressions (i.e.,
giving minimum possible star-height). I.e., we can suppose
that conditions (r1–r4) hold. Let these automata be

Kp = (Qp,Σ, δp, Sp, Fp) and Kr = (Qr,Σ, δr, Sr, Fr);

and corresponding functions be

τp : Qp → {1, . . . , |Qp| } and τr : Qr → {1, . . . , |Qr| }.

Then we can use the following automata and ordering func-
tions; let us remark in advance, that the transition functions
are considered as the sets, and the facts of defining required
regular expressions by these automata are evident.

For expression (p+ r), we can consider automaton

K(p+r) = (Qp ∪Qr, Σ, δp ∪ δr, Sp ∪ Sr, Fp ∪ Fr).

And considering values Tp, Tr and

Mp = max
qp∈Qp

τp(qp),

we obtain, that the ordering function can be the following
one:

τ(p+r)(q) =

τp(sp), if sp ∈ Sp ;

τr(sr) + Tp, if sr ∈ Sr ;

τp(qp) + Tp + Tr, if qp ∈ Qp \Sp ;

τr(qr) + Tp + Tr +Mp, if qr ∈ Qr \Sr .

Evidently,

SH(R(K(p+r), τ(p+r))) =

max
(
SH(R(Kp, τp)),SH(R(Kr, τr))

)
.

Conditions (r1), (r3) and (r4) also hold.

For expression (p · r), we can consider automaton

K(p·r) = (Qp ∪Qr, Σ, δp ∪ δr ∪ δ′, Sp, Fr),
where δ′(q , a) 3 sr if and only if δ(q , a) 3 fp

for all possible fp ∈ Fp , sr ∈ Sr , a ∈ Σ

(δ′ contains no other elements). The ordering function τ(p·r)
can be defined in the following way:

τ(p+r)(q) =

{
τp(qp), if qp ∈ Qp ;

τr(qr) +Mp, if qr ∈ Qr .

Like previous case,

SH(R(K(p·r), τ(p·r))) =

max
(
SH(R(Kp, τp),SH(R(Kr, τr))

)
,

and conditions (r1), (r3) and (r4) also hold.
And for expression (r∗), we can consider automaton

K(r∗) = (Qr ∪ {q′}, Σ, δr ∪ δ′, Sr ∪ {q′}, Fr ∪ {q′}),
where δ′(q , a) 3 sr if and only if δ(q , a) 3 fr

for all possible fr ∈ Fr , sr ∈ Sr , a ∈ Σ

(δ′ contains no other elements). The ordering function τ(r∗)
can be defined in the following way:

τ(r∗)(q) =

τr(q), if q ∈ Qr ;

τr(q
′) =

(
min
q∈Qr

τr(q)

)
/ 2 .

Conditions (r1), (r3) and (r4) are evident; let us prove (r2).
By the way of construction K(r∗), we obtain the following

fact: each path of its transition graph, which belongs to K(r∗)

and does not belong to Kr, has to contain a state sr ∈ Sr.
Then for any states q, q′, q′′ ∈ Qr, where q /∈ Sr, we obtain
the coincidence of the sets ∆q(q

′, q′′) for automata K(r∗)

and Kr. And only for states sr ∈ Sr, we can obtain some
new paths of sets ∆sr (sr, q) and ∆sr (q, sr). We mean the
paths which belong to automaton K(r∗) and does not belong
to Kr.

For three the following objects:
• automaton Kr;
• corresponding (defined in this section) function τr;
• and some its state q,

we denote the defined in previous section value SH(ρq)
by SHr(q). Then by Proposition 3 and condition (r3) for
automaton K(r∗), we obtain, that:

SH(r∗)(q) = SHr(q), if q ∈ Qr \Sr ;

SH(r∗)(s) ≤ SHr(q) + 1, if s ∈ Sr ;

SH(r∗)(q
′) = 0 .

Then by condition (r4) for automaton K(r∗), we obtain
condition (r2). �

VI. CONCLUSION

Using Proposition 5, we can reformulate the star-height
problem for regular languages in the following way:

for the given regular language, we have to con-
struct the equivalent finite automaton K having the
minimum possible star-height.

After that, considering n! bijective functions of the type
τ : Q → {1, . . . , n} (where n = |Q|), we construct regular
expressions R(K, τ) and choose the expression having the
minimum possible star-height.

4

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 7, 2018

In addition to this (“natural”) continuation of the topic of
this paper, there are others, not so obvious. As we said before,
the publication of this not-so-complicated problem has some
different goals, they are related to the future development of
the topic under consideration here.
• The first topic is the consideration of the generalized

star-height problem. (As we said before, the connec-
tion between the generalized star-height problem and
generalized pseudo-automata is to be considered in one
of the following publications.)

• The second topic is the consideration of extended au-
tomata, see [15].

• And the third topic is precisely the transition to the star-
height problem for the languages.

For all such topics, problems close to those considered in this
article are possible. Besides, it is very important to note that
the possible developments of the topic described here can
be treated completely independently of each other (“move-
ments” towards the complication: “vertically”, “horizontally”
and “upwards”): for example, it is possible to consider the
generalized star-height problem (i.e., the star-height problem
for generalized regular expressions) with approach using
extended pseudo-automata.

The problems considered in this paper are also related to a
topic that is set aside from the ones described here: we should
to describe an algorithm, answering the question whether or
not a proper subset of the set of edges forms the equivalent
automaton.

(See some related questions in [16], [17]. Certainly, we do
not mean an exhaustive algorithm. The brute force method
consists in this case in the complete application of the
algorithm for constructing two canonical automata and their
subsequent comparison.)

The author hopes, that the joint application of algorithms
mentioned above can give a faster than available determining
the star-height of the given regular language.

REFERENCES

[1] Melnikov B. Ob odnoy klassifikacii kontekstno-svobodnyh . . . [On
a classification of sequentional context-free languages and gram-
mars]. Vestnik of Moscow University. Series 15: Computational
Mathematics and Cybernetics. 1993, no. 3, pp. 64–69. (in Russian,
https://elibrary.ru/title_about.asp?id=8373)

[2] Melnikov B. and Vakhitova A. Some more on the finite automata. The
Korean Journal of Computational and Applied Mathematics (Journal of
Applied Mathematics and Computing). 1998, vol. 5, no. 3. pp. 495–506.

[3] Melnikov B. O zvyozdnoy vysote regulyarnogo yazyka . . . [On the star-
height of a regular language. Part III: The star-height of an automaton
and the scheme of the transformation algorithm]. Heuristic algorithms
and distributed computations. 2014, no. 3, pp. 60–76. (in Russian,
https://elibrary.ru/item.asp?id=22376180)

[4] Eggan L. Transitions graphs and the star height of regular events.
Michigan Mathematical Journal. 1963, vol. 10, pp. 385–397.

[5] Hashiguchi K. Algorithms for determining relative star height and star
height. Information and Computation. 1988, vol. 78, pp. 124–169.

[6] Perrin D. Finite Automata. Handbook of theoretical computer science,
Vol. A. MIT Press Cambridge, MA, USA, 1990, 57 p.

[7] Kirsten D. Distance desert automata and the star height problem.
Informatique Théorique et Applications. 2005, vol. 39, no. 3. pp. 455–
509.

[8] Bojanczyk M. Star height via games. ACM/IEEE Symposium on Logic
in Computer Science (LICS). 2015, pp. 214–219.

[9] Pin J.-E., Straubing H., Thérien D. Some results on the generalized star-
height problem. Information and Computation. 1992, vol. 101, no. 2,
pp. 219–250.

[10] Melnikov B. and Melnikova A. Pseudo-automata for generalized reg-
ular expressions. International Journal of Open Information Technolo-
gies. 2018, vol. 6, no. 1. pp. 1–8.

[11] Salomaa A. Jewels of Formal Language Theory. Rockville (Maryland):
Computer Science Press, Inc. 1981, 144 p.

[12] Melnikov B. Extended nondeterministic finite automata. Fundamenta
Informaticae. 2010, vol. 104, no. 3. pp. 255–265.

[13] Melnikov B. The complete finite automaton. International Journal of
Open Information Technologies. 2017, vol. 5, no. 10. pp. 9–17.

[14] Melnikov B. and Sayfullina M. O nekotoryh algoritmah ekviva-
lentnogo preobrazovaniya nedeterminirovannyh konechnyh avtoma-
tov [On some algorithms for the equivalent transformation of
nondeterministic finite automata]. Izvestiya of Higher Educational
Institutions. Mathematics. 2009, no. 4, pp. 67–72. (in Russian,
https://elibrary.ru/item.asp?id=11749888)

[15] Melnikov B. Extended nondeterministic finite automata. Fundamenta
Informaticae. 2010, vol. 104, no. 3. pp. 255–265.

[16] Dolgov V. and Melnikov B. Postroenie universal’nogo konechnogo
avtomata . . . [The construction of a universal finite automa-
ton. Part I: From theory to practical algorithms]. Vestnik of
Voronezh State University. 2013, no. 2, pp. 173–181. (in Russian,
https://elibrary.ru/item.asp?id=20267924)

[17] Dolgov V., Melnikov B. and Melnikova A. Cikly grafa
perehodov bazisnogo avtomata . . . [Cycles of the transition
graph of a basic automaton and related questions]. Vestnik of
Voronezh State University. 2016, no. 4, pp. 95–111. (in Russian,
https://elibrary.ru/item.asp?id=27257800)

5

	Introduction and motivation
	Preliminaries
	A special version of the proofof Kleene's theorem
	The star-height of a finite automaton
	The finite automaton for the given language
	Conclusion
	References

