

Abstract — This article describes the existing Interactive

Voice Responses technologies for program ATE (Automatic

Telephone Exchange) and provides their analysis in order to

create more perfect technology.

The paper proposes a new extension for the voice menu

organization, in which all shortcomings of the existing

technologies would be removed.

The paper also presents a method to describe the voice menu

to allow anybody without special knowledge to configure voice

menu system for itself.

Keywords—telephone exchange, XML, Asterisk.

I. INTRODUCTION

Nowadays business draws up its own rules: in the

condition of contemporary speed of life, constant time

deficit, human resources shortage companies must be able to

pay attention to each client. First of all what important to

companies are incoming calls from clients. But increasing

numbers of clients makes secretaries fail to manage their job

well, and the clients are lost. The increasing of stuff number

is not the decision. State-of-the-art technologies offer to us

more flexible solution: The Interactive Voice Menu (IVM)

[1].

It is a system of prerecorded voice messages, which routs

calls using information captured from user’s input via tone

dialing. Telephone voice menu systems effectively transform

touch-tone telephones into computer input and output

devices.

Menus are commonly used in voice mail systems,

interactive voice response systems, and a range of other

speech applications. A voice menu is similar to a graphical

pull-down or pop-up menu [2]. It presents a set of choices

to, and accepts input from, the user. Voice menu items are

presented with recorded or synthesized speech rather than in

textual form. Technically input could be gathered from a

speech recognizer or telephone keypad (instead of a mouse,

keyboard or touch screen in the traditional systems). In our

development for this paper we deal with telephone keypad.

There are a lot of companies that create the IVM systems

for anyone. They do it for money. And if there is a necessity

to modify already created menu, another sum must be paid.

The programmatic interface to a voice menu typically

includes standard elements. At the first hand, it is a list of

voice prompts. Voice prompt could be a text string that

Article received Sept 20, 2013.

A.Bembieva – graduated from a master's program at Lomonosov

Moscow State University.

D.Namiot is senior researcher at Open Information Technologies Lab,

Lomonosov Moscow State University

represents voice prompts for use with a text-to-speech

synthesizer, or a file name for a digital playback system.

These prompts are then used to present options (alternatives)

to the user. Of course, the whole picture could be more

complex. Our voice menu could handle lists of second

(third) round prompts, etc. Our voice system could provide

some help facility that should be described too, etc.

Since the custom menu items are subject to frequent

updates, the creation of the tools is very important. Here

came the need to extend this technology to allow anyone to

create the Interactive Voice Response (IVR) [3] he wants for

himself.

This article describes the analysis of existing technologies

and creation the best one for the Asterisk platform [4].

Asterisk is an open source, converged telephony platform.

Asterisk combines more than 100 years of telephony

knowledge into a robust suite of tightly integrated

telecommunications applications [4]. Asterisk contains out

of the box a huge set of applications, such as voicemail,

hosted conferencing, call queuing and agents, music on hold,

etc. We have deployed Asterisk for a number of projects,

such as Home Gateway [5], telecom mashups [6, 7] and

Smart Home projects [8]. Our paper [9] presents a new

development tool for developing Asterisk services as

ordinary CGI scripts. And this article is one more our tool to

facilitate launch and support Asterisk applications. It is a

tool that simplifies the creation of voice menus.

II. RELATED WORKS

In order to find the ways of realization, let us refer to the

internal Asterisk structure and explore the interaction

mechanisms with the other systems. Internal platform’s

configuration mechanisms are transparent.

The change of Asterisk settings can be done by the

changing of its configuration files. One of the most

important configuration files is extension.conf, which

defines the dial plan. The dial plan is the formal description

of the routing scheme and calls processing. It directs each

call from its source to the destination via different

applications. All calls: voice mail, conference, auto

attendant’s menu or just phone call – are defined by dial

plan’s logic and concept.

In Asterisk the dial plan is defined as the list of the

applications and their arguments, executed in a concrete

order. Execution order is defined by the priorities. Each step

is registered as follows:

exten => <exten>,<priority>,<application>, [(<args>)]

Voice Dialogs for Asterisk

Aysel Bembieva, Dmitry Namiot

The content of the extensions.conf file is divided into

sections, called contexts. Each context contains defined

static settings and definitions or executable dial plan

commands. In other words, each context is a set of

extensions with its own unique name.

Contexts are used in order to perform main functions of

Automatic Telephone Exchange [10] (hereinafter referred to

as ATE): security, callings routing, auto attendant, multilevel

voice menu, authorization, callback, macros.

The platform flexibility, its openness, accessibility allow

creation of new possibilities, one of which is voice menu.

Actually, the dial plan (dial plan configuration) is the

simplest form of voice menu. The dial plan configuration

changing – this is exactly on what the first approach for

voice menu creation is based.

After main sections all the rest of the file extensions.conf is

devoted to a definition of the dial plan, where the IVR logic

can be described. Let us see an example:

[sip-in]

exten => 444,1,Goto(menu,s,1)

 [menu]

exten => s,1,Set(home="/home/menu")

exten => s,2,Wait(1)

exten => s,3,Playback(${home}/welcome)

exten => s,4,Playback(${home}/menu)

exten => s,5,WaitExten()

exten => 1,1,Playback(${home}/dept)

exten => 1,2,Goto(s,1)

exten => 2,1,Dial(SIP/accounting)

exten => t,1,Playback(make_choice)

exten => t,2,Goto(s,1)

exten => i,1,Playback(wrong_choice)

exten => i,2,Goto(s,1)

In spite of the simplicity, this approach has at least one

shortcoming: any change in IVR each time affects the dial

plan. So, there is a need to reload Asterisk configuration in

order the changes will take effect. Obviously, this approach

is not considered to be acceptable.

Another possibility that we want to investigate - is the

integration of external scripts. Asterisk supports external

scripts intercommunication interface – AGI: Asterisk

Gateway Interface. AGI is Asterisk’s analogue for CGI

scripts in web programming. AGI is integrated with Asterisk

and represents a method for execution of external scripts.

Scripts can extend Asterisk functionality by means of other

programming languages, such as Perl, PHP, C, Java, etc.

AGI scripts interact with Asterisk via standard input and

output streams.

So, our second approach for voice menu implementation is

external script. This script (AGI-application) would contain

all IVR-related logic.

A huge benefit of this approach is that there is no need to

know all aspects of work with Asterisk configuration files.

As a minimum, we can offer our own syntax for menu. The

main disadvantage of this approach is the necessity to

rewrite our script each time the IVR is changed. It means

that the next step is almost obvious. Let us use the generic

external script (it is not changes) and describe IVR itself as

an external data source for the above mentioned script. In

other words, this approach consists in the connecting of the

AGI script and the external service that would provide the

service.

One of the main ways of voice service organizing is

VoiceXML It is the W3C's standard XML format for

specifying interactive voice dialogues between a human and

a computer [11].

The principal part in the system is the VoiceXML

Interpreter, which is responsible for original code

recognition. Context monitoring module - VXML Interpreter

Context – performs operations for interpretation VXML

document, finds out and serves incoming calls to a number

which is linked to a VXML-script.

Web server stores VXML scripts set. Each script is mapped

to a telephone number. At every call to a predefined number

web server transmits the realization of a definite script to the

VoiceXML Interpreter. Implementation Platform

implements functions concerned with the work of the VXML

script, e.g. produce or recognize speech via special servers:

TTS (Text-To-Speech) and ASR (Automatic Speech

Recognition), plays audio, etc.

VXML syntax is very similar to HTML. Each menu item is

enclosed in the tag <form/>. Each menu item can contain

<audio/> tag with the name of the file to be played for the

chosen menu item. There are also the following tags:

• <noinput/> - event handler: if there were no entered input,

• <nomatch/> - event handler: if entered data doesn’t

correspond to any from the existing variants.

• <filled/> - event handler: if user entered correct data, next

steps are made according to the scenario from this tag.

There are some shortcomings interfering with the

visualization of the scenario: all menu items, no matter

whether it a definite item –endpoint or just a submenu – are

listed sequentially. But of course VXML eliminates the

need to study the configuration for Asterisk.

Our idea was to combine the simplicity and portability of

VXML with the efficiency of direct update configuration

files.

III. PROPOSED EXTENSION

Our solution is based on a new extension for Asterisk, for

which the following aspects must be actual:

• This extension would use internal platform mechanisms

for the efficiency.

• It would cover shortcomings of all technologies listed

earlier.

The voice menu structure format must be simple for both

program interpretation and human understanding.

There are some integration mechanisms for a new

extension, but they are different according to extension type.

Asterisk allows creating extensions with the following types:

channel drivers, dial plan applications and functions,

resources, codecs, etc.

The extension for the voice menu will deal mostly with

the dial plan, so it pertains to the dial plan applications.

They provide the whole system with the main functionality

for calling. Applications can answer the calls, play the audio

files, etc. Their call is scripted in the dial plan. E.g.:

exten => 6123,1,MyApplication(one,two,three)

Similar to VXML, we will describe our menu in the

external XML file. Let us see an example (real service for

Lomonosov Moscow State University):

<menuItemList> <!—-MSU_Welcome.mp3-->

 <item digit="1"> <!—CMC.mp3-->

 <menuItemList>

 <item digit="1">

 <endpoint>

 <file>11-Dean.mp3</file>

 <abonent>SIP/211</abonent>

 </endpoint>

 </item>

 <item digit="2">

 <endpoint>

 <file>12-Accounting_dpt.mp3</file>

 <abonent>SIP/212</abonent>

 </endpoint>

 </item>

 </menuItemList>

 </item>

 <item digit="2"> <!—Mech-Math.mp3-->

…

</menuItemList>

This example demonstrates that the main tag is

<menuItemList/>. It contains information about menu items

choosing for each level. On the first level there is some

welcome message (just a media file to be played). Further

there are options described in <Item/> tag, and «digit»

attribute is for the key to be pressed. In other words, this

structure lets quickly automate the following dialogue: “To

reach the faculty of the Computational mathematics and

Cybernetics press 1“, “For the mechanic and mathematic

faculty press 2”, etc.

Each menu item can represent itself a menu for another

items set. It is unlike VXML, where all possible submenus

were located on the same level. So, <Item/> tag can contain

<menuItemList/> tag description too.

E.g., pressing “1” causes switching to voice menu for

CMC faculty with its own set of menu items, where for each

item can be played own greeting: “To reach the Dean’s

office press “1””, “To reach the Accounting dpt. Press “2”,

etc.

If menu item means switching to the final telephone

subscriber, <Item/> tag must contain <endpoint/> tag unlike

VXML where event handlers were defined.

Tag <endpoint/> definitely specifies the final (the real)

telephone subscriber by the tags: <abonent/>, <file/>.

There is also a possibility to define service settings similar

to <noinput/>, <nomatch/>, but unlike VXML, there they

can be defined only once, without any duplicates. Also if it

will be necessary this option can be turned off.

<config>

 <SoundConfig name="Hello" enabled="1">

 <file>Hello.mp3</file>

 </SoundConfig>

 <SoundConfig name="SelectBranch" enabled="1">

 <file>SelectBranch.mp3</file>

 <repeat>no</repeat>

 </SoundConfig>

 <SoundConfig name="Timeout" enabled="1">

 <file>Timeout.mp3</file>

 </SoundConfig>

 <SoundConfig name="ErrorOnRedirect" enabled="1">

 <file>ErrorOnRedirect.mp3</file>

 </SoundConfig>

....

<config/>

Following options were picked out to be read as standard

service messages:

• The possibility to specify the standard greeting message

(“Hello, …”);

• The possibility to specify the selection prompt message

(SelectBranch);

• Standard timeout message (Timeout);

• Message to inform about call redirection error

(ErrorOnRedirect);

• Informational message about call redirection

(Redirecting);

• Possibility to specify the timeout for switching to

default number (ShortTimeout), and exiting (LongTimeout).

Asterisk IVR extension can be called from a function,

defined in dial plan configuration file. Voice menu

description file must be given as the input.

exten => 999, 1, ivm(“config_path”);

Calling to this number (it is 999 in our example), causes

menu settings reading from “config_path” via the EXPAT

library. Having used the library calls, configuration file data

is being interpreted and kept as a structure, written in C. So,

internal structure CONFIG_STRUCT contains all

information about configuration menu file:

typedef struct _CONFIG_STRUCT

{

 PLAYFILE_STRUCT pf_hello;

 PLAYFILE_STRUCT pf_select;

 PLAYFILE_STRUCT pf_redirecting;

 PLAYFILE_STRUCT pf_sorry;

 PLAYFILE_STRUCT pf_timeout;

 PLAYFILE_STRUCT pf_internalError;

 BOOL bRepeatAllOnTimeout;

 MENULEVEL_STRUCT menuLevel;

 ENDPOINT_STRUCT* defaultEndpoint;

 DWORD dwShortTimeout;

 DWORD dwLongTimeout;

} CONFIG_STRUCT;

Actually, the full source file can be downloaded from

Google Code site: http://code.google.com/p/my-ivm-

system/source/browse/ .

Then there are played the standard greeting messages,

messages offering menu selection prompt, if the

corresponding options from configuration file are switched

on. Then the system plays menu items. The implementation

uses the following internal call:

ast_streamfile(struct ast_channel *chan, const char

*filename, const char *preflang)

After voiced menu items, the system switches to wait for

input data. There is the internal function

ast_waitfordigit (long timeout)

The global timeout for the input is defined via

configuration file. After this time, the menu is sounded again

sounded.

After the user’s input was entered, there must be

conducted the next menu configuration analysis and defined

whether the entered data definitely identifies the final

telephone subscriber. If it is so, call redirection must take

place. Otherwise, such menu item would be considered as

another submenu. In this case system goes into menu items

playing procedure and user’s input waiting again.

Default phone number in the configuration file lets us

support the use cases where user didn’t entered input at all.

For this case a special message about the redirection to the

default number can be played. If there wasn’t defined such

default number, the timeout message must be played before

the disconnection.

And call redirection message ill be played for all

redirected calls.

The deployment is pretty standard. The downloaded

extension should be copied into directory

“*\asterisk\apps\”. This directory is home place for all

modules of dial plan application type. If the platform is

already installed, it is necessary to rebuild Asterisk with the

new extension. Then there must be module registration

procedure via internal Asterisk commands.

In order to make this extension work for a selected number,

it is necessary to add to the dial plan configuration file the

following line:

exten =>

PHONE_NUMBER,1,IVR(“PATH_TO_IVR.XML”).

So, calling to a number PHONE_NUMBER will make it

work.

REFERENCES

[1] Schumacher, Robert M., Mary L. Hardzinski, and Amy L. Schwartz.

"Increasing the usability of interactive voice response systems:

Research and guidelines for phone-based interfaces." Human Factors:

The Journal of the Human Factors and Ergonomics Society 37.2

(1995): 251-264.

[2] Arons, Barry. "The design of audio servers and toolkits for supporting

speech in the user interface." Journal of the American Voice I/O

Society 9 (1991): 27-41.

[3] Corkrey, Ross, and Lynne Parkinson. "Interactive voice response:

review of studies 1989–2000." Behavior Research Methods,

Instruments, & Computers 34.3 (2002): 342-353.

[4] Van Meggelen, Jim, Jared Smith, and Leif Madsen. Asterisk: The

Future of Telephony: The Future of Telephony. O'Reilly, 2009.

[5] Schneps-Schneppe, Manfred, and Dmitry Namiot. "About Home

Gateway Mashups." International Journal of Open Information

Technologies 1.5 (2013): 1-5.

[6] Schneps-Schneppe, M., & Namiot, D. (2008). Telco Enabled Social

Networking: Russian Experience. In BALTIC CONFERENCE (p.

33).

[7] Schneps-Schneppe, M., & Namiot, D. (2008). Telco enabled social

networking exampled by GEO tagging. APPLIED INFORMATION

AND COMMUNICATION TECHNOLOGIES, 50.

[8] Schneps-Schneppe, M., Maximenko, A., Namiot, D., & Malov, D.

(2012, October). Wired Smart Home: energy metering, security, and

emergency issues. In Ultra Modern Telecommunications and Control

Systems and Workshops (ICUMT), 2012 4th International Congress

on (pp. 405-410). IEEE. DOI: 10.1109/ICUMT.2012.6459700

[9] Schneps-Schneppe, Manfred, Dmitry Namiot, and Andrey Ustinov.

"A Telco Enabled Social Networking and Knowledge Sharing."

International Journal of Open Information Technologies 1.6 (2013):

1-4.

[10] Todorov, P., & Poryazov, S. (1985). Basic Dependences

Characterizing a Model of an Idealised (Standard) Subscriber

Automatic Telephone Exchange. Proc. of the 11-th ITC, 4-3.

[11] Farley, K. M., O'Reilly, J., Squire, L., & Farley, M. (2002). Voice

application development with VoiceXML. Sams.

[12] Namiot, D., & Sneps-Sneppe, M. (2013, March). Wireless Networks

Sensors and Social Streams. In Advanced Information Networking

and Applications Workshops (WAINA), 2013 27th International

Conference on (pp. 413-418). IEEE. DOI: 10.1109/WAINA.2013.27

