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Случайное сглаживание: Теоретические основы
и систематический обзор

К.А. Айрапетьянц, Е.А. Ильюшин

Аннотация—На сегодняшний день, когда системы ис-
кусственного интеллекта активно используются в различ-
ных сферах, проблема безопасности этих систем становится
всё более актуальной. И конечно нейросетевые алгорит-
мы, которые мы на сегодняшней день и отождествляем
с понятием «искусственный интеллект», также подверже-
ны преднамеренным и не преднамеренным воздействиям,
поэтому получение гарантий устойчивости их работы яв-
ляется важной задачей. Одиним из методов позволяющих
решать данную задачу является «случайное сглаживание»
(randomized smoothing). С помощью данного метода мы
можем получить формальные гарантии качества работы
классификатора на заданном распределении данных. Метод
случайного сглаживания, а также его модификации и будут
рассмотрены в данном обзоре.
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I. Введение
В современном мире, когда системы искусственного

интеллекта интегрируются в различные сферы жизни,
такие как: медицина, робототехника, промышленность,
управление автомобилем т.д., вопрос безопасности си-
стем ИИ становится очень остро.
Как и многие другие информационные системы, си-

стемы построенные на базе искусственных нейронных
сетей (далее ИНС) подвергаются атакам злоумышлен-
ников ради получения своей выгоды, таким образом
изучение атак и защит от них на системы данного класса
становятся важными областями исследований для науч-
ного сообщества. Для решения многих прикладных за-
дач используются классификаторы построенные на базе
ИНС. Тогда, в условии, когда классификатор может быть
атакован, нужен метод, который будет гарантировать его
устойчивость (робастность) к атаке с какой-то вероятно-
стью.
Такой метод «случайное сглаживание» (randomized

smoothing) был предложен в работе [1], где исследуется
возможность построения классификатора, устойчивого к
состязательному шуму по норме l2 и в качестве гаран-
тии предоставляется сертифицированный радиус, внутри
которого классификатор будет устойчив.
Далее, метод случайного сглаживания развивается в

работах, где исследователи модифицируют процесс со-
стязательного обучения, максимизируя радиус сертифи-
кации, пытаются применить случайное сглаживание в за-
даче сегментации и используют диффузионные модели.
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II. Теоретические основы вероятностной сертификации

A. Сертифицированная состязательная робастность с
помощью случайного сглаживания

В работе [1] продемонстрировано, как преобразовать
произвольный классификатор, корректно классифициру-
ющий изображения с гауссовским шумом, в новый клас-
сификатор с гарантированной робастностью к состяза-
тельным возмущениям по норме ℓ2.
Операция, которая называется randomized smoothing

(случайное сглаживание) позволяет преобразовать лю-
бой базовый классификатор f в сглаженный классифика-
тор g, сертифицированно устойчивый по норме ℓp. В дан-
ной работе рассматривается p = 2, также в работах [2] и
[3] p принимает значения 1 и ∞ соответственно.
Основным ограничением случайного сглаживания яв-

ляется невозможность точного вычисления вероятностей
классификации элементов из распределения N (x, σ2I)
для нейросетевых классификаторов f . Следовательно,
точная оценка предсказаний g для любого входа x и
вычисление радиуса сертифицированной устойчивости
невозможны. Для решения данных задач применяются
алгоритмы Монте-Карло.

Определение II.1. Классификатор называют сертифи-
цированно устойчивым, если для любого входа x гаран-
тируется, что предсказание классификатора константно
в некоторой области вокруг x.

Методы сертификации подразделяются на точные и
консервативные. В контексте возмущений, ограничен-
ных ℓp-нормой, точные методы для классификатора g,
входа x и радиуса r определяют существование или от-
сутсвие возмущения δ такого, что ||δ|| ≤ r, для которого
g(x) 6= g(x+ δ). Консервативные методы либо сертифи-
цируют отсутсвие такого возмущения, либо отказывают-
ся производить сертификацию (даже если доказано, что
такого возмущения не существует).
Точные методы обычно основаны на SMT или цело-

численном линейном программировании, а некоторые из
них ограничивают глобальную константу Липшица для
нейронной сети и характеризуются низкой масштабируе-
мостью в отличие от консервативных методов. Консерва-
тивные методы стремятся к наименьшему вмешательству
в данные для сохранения их структуры и особенностей,
минимизируя искажения.
1) Случайное сглаживание:

Определение II.2. Пусть f : Rd → Y – произвольный
классификатор, сопоставляющий входы из Rd классам
из Y . Для любого входа x сглаженный классификатор
g возвращает класс, который базовый классификатор f
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предсказывает с наибольшей вероятностью при добавле-
нии изотропного гауссовского шума::

g(x) = argmax
c∈Y

P(f(x+ ϵ) = c), (1)

где ϵ ∼ N (0, σ2I).

Изотропный гауссовский шум предполагает, что свой-
ства шума одинаковы во всех направлениях простран-
ства. В контексте анализа многомерных сигналов это
означает, что шум имеет одинаковую дисперсию и кор-
реляционные свойства во всех направлениях, т.е. его
статистические характеристики не зависят от ориентации
или направления.
Эквивалентное определение: g(x) возвращает класс

c, прообраз которого {x′ ∈ Rd : f(x′) = c} имеет
наибольшую вероятность на распределении N (x, σ2I).
Уровень шума σ – гиперпараметр g, регулирующий соот-
ношение между устойчивостью и точностью, и остается
постоянным независимо от входа x.
2) Гарантии робастности: Предположим, что при

классификации элементов из распределения N (x, σ2I)
базовый классификатор f возвращает наиболее вероят-
ный класс cA с вероятностью pA, а второй по вероят-
ности класс возвращается с вероятностью pB . Основной
результат заключается в том, что сглаженный классифи-
катор g обладает устойчивостью вокруг точки x по норме
ℓ2 с радиусом

R =
σ

2
(Φ−1(pA)− Φ−1(pB)), (2)

где Φ−1 – функция, обратная к функции распределения
стандартного нормального распределения.
Результат остается справедливым при замене pA его

нижней доверительной границей pA, а pB его верхней
доверительной границей pB .

Теорема II.1. Пусть f : Rd → Y – произвольная детер-
минированная или случайная функция и ϵ ∼ N (0, σ2I).
Определим g(x) = argmaxc∈Y P(f(x+ ϵ) = c).
Предположим, cA ∈ Y и pA, pB ∈ [0, 1] 1 удовлетворя-

ют условию 2:

P(f(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ϵ) = c) (3)

Тогда, g(x+ δ) = cA ∀||δ||2 < R, где R = σ
2 (Φ

−1(pA)−
Φ−1(pB)).

Замечание II.1. Теорема II.1 не накладывает ограниче-
ний на природу классификатора f .

Замечание II.2. Сертифицированный радиус R → ∞
при pA → 1 и pB → 03 и высоком уровне шума σ.

Теорема II.2. Пусть pA+pB ≤ 1. Тогда для любого воз-
мущения δ с ‖δ‖2 > R существует базовый классифика-
тор f , соответствующий распределению вероятностей
классов

P(f(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ϵ) = c), (4)

1нижняя граница, при которой классификатор выдает cA; верхняя
граница, при которой классификатор выдает cB

2классификатор f выдает cA с наибольшей вероятностью среди всех
классов

3Гауссово распределение определено на всем Rd и единственный
случай, когда f(x+ ϵ) = cA с вероятностью 1 это когда f = cA почти
всюду.

для которого g(x+ δ) 6= cA.

Теорема II.2 демонстрирует, что гауссовское сглажи-
вание естественным образом влечет ℓ2-робастность: при
отсутствии дополнительных предположений относитель-
но базового классификатора, выходящих за рамки ука-
занных вероятностей классов, множество возмущений,
к которым доказуемо устойчив сглаженный по Гауссу
классификатор, представляет собой в точности ℓ2-шар.
3) Масштабируемость: Поскольку формула для ра-

диуса R не зависит явно от размерности данных d,
может возникнуть предположение о снижении эффектив-
ности случайного сглаживания для изображений боль-
шей размерности. Однако изображения высокого раз-
решения способны выдерживать более высокие уровни
изотропного гауссового шума σ, до разрушения классо-
определяющих признаков. Следовательно, при большом
разрешении сглаживание может применяться с больши-
ми значениями σ, что приводит к увеличению радиуса
сертификации.

Рис. 1. Результат работы сглаженного классификатора на изображении
x. Слева: области решений базового класиификатора f , обозначен-
ные разными цветами. Пунктирные линии – изолинии распределения
N (x, σ2I). Справа: распределение f(N (x, σ2I)), pA – нижняя до-
верительная граница вероятности наиболее вероятного класса, pB –
верхняя доверительная граница вероятности остальных классов. Пред-
сказание g(x) отмечено синим цветом.

4) Алгоритм: Для оценки предсказания сглаженного
классификатора g(x) необходимо определить класс cA
с максимальным весом в распределении f(x + ϵ). Рас-
смотрим вспомогательные функции для предсказания и
сертификации:
• SampleUnderNoise(f, x, num, σ);

– генерирует num шумов из распределения
ϵ1, . . . , ϵnum ∼ N (0, σ2I);

– получает предсказания f(x+ϵ1), . . . f(x+ϵnum)
путем прогона зашумленных изображений через
классификатор;

– возвращает счетчик количества предсказаний
для каждого класса c;

• BinomPValue(nA, nA + nB , p) – возвращает p-
значение гипотезы о том, что nA ∼ Binomial(nA +
nB , p);

• LowerConfBound(k, n, 1− α) – возвращает односто-
ронний нижний (1 − α)-доверительный интервал
для биномиального параметра p при условии что
k ∼ Binomial(n, p). Другими словами, функция воз-
вращает некоторое число p для которого p ≤ p
с вероятностью как минимум 1 − α по сэмплам
k ∼ Binomial(n, p).
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Алгоритм 1 Сертификация и предсказание
1: // Оценим g на x
2: function Predict(f , σ, x, n, α)
3: counts ← SampleUnderNoise(f , x, n, σ)
4: ĉA, ĉB ← топ 2 класса из counts nA, nB ← counts[ĉA], counts[ĉB ]
5: if BinomPValue(nA, nA + nB , 0.5) ≤ α then
6: return ĉA
7: else
8: return ABSTAIN
9: end if
10: end function
11:
12: // Сертифицируем робастность g относительно x
13: function Certify(f , σ, x, n0, n, α)
14: counts0← SampleUnderNoise(f, x, n0, σ)
15: ĉA ← топ класс в counts0
16: counts← SampleUnderNoise(f, x, n, σ)
17: pA ← LowerConfBound(counts[ĉA], n, 1− α)
18: if pA > 1

2 then
19: return предсказание ĉA и радиус σΦ−1(pA)
20: else
21: return ABSTAIN
22: end if
23: end function

B. Теоретический компромисс между робастностью и
точностью
В работе [4] рассматривается бинарный классифика-

тор: пусть модель задаёт отображение f : Rd → R, где
Rd – пространство всевозможных входных данных.

Определение II.3. Робастная ошибка классификатора f
определяется как:

Rrob(f) := E(x,y)∼D1{∃x′ ∈ B(x, ϵ) | f(x′)y ≤ 0}, (5)

где B(x, ϵ) обозначает шар радиуса ϵ с центром в точке
x.

Определение II.4. Естественная ошибка классифика-
ции определяется как:

Rnat(f) := E(x,y)∼D1{f(x)y ≤ 0}. (6)

Следует отметить, что Rrob(f) ≥ Rnat(f) для любого
классификатора f , при этом Rrob(f) = Rnat(f) тогда и
только тогда, когда ϵ = 0.

Определение II.5. Ошибка на границе решения опреде-
ляется как:

Rbdy(f) := E(x,y)∼D1{x ∈ B(DB(f), ϵ), f(x)y > 0}, (7)

где B(DB(f), ϵ) обозначает ϵ-окрестность границы реше-
ния классификатора f , то есть множество

{x ∈ Rd : ∃x′ ∈ B(x, ϵ) | f(x)f(x′) ≤ 0}.

Из введенных обозначений непосредственно следует
декомпозиция робастной ошибки:

Rrob(f) = Rnat(f) +Rbdy(f). (8)

В статье доказываются теоремы II.3, II.4, которые поз-
воляют получить оптимальные верхние и нижние оценки
для Rrob.

Предположение 1 (Калиброванная функция потерь).
Предположим, что функция потерь ϕ является калибро-
ванной, то есть для η 6= 1/2 выполняется H−(η) > H(η),
где

H(η) := inf
α∈R

Cη(α) := inf
α∈R

(ηϕ(α) + (1− η)ϕ(−α)) , (9)

H−(η) := inf
α:(2η−1)α≤0

Cη(α). (10)

Рис. 2. Сравнение границ решения классификаторов. Слева: граница
решения при стандартном обучении. Справа: граница решения при
использовании предложенного метода робастного обучения.

Теорема II.3 (Верхняя оценка робастной ошибки).
Пусть Rϕ(f) := Eϕ(f(x)y) и R∗ϕ := minf Rϕ(f).
При выполнении предположения 1 для любой неот-

рицательной функции потерь ϕ такой, что ϕ(0) ≥ 1,
любой измеримой функции f : Rd → R, любого распре-
деления на Rd × {±1} и любого λ > 0 выполняется:

Rrob(f)−R∗nat ≤ ψ−1(Rϕ(f)−R∗ϕ)
+ P[x ∈ B(DB(f), ϵ), f(x)y > 0]

≤ ψ−1(Rϕ(f)−R∗ϕ)
+ E max

x′∈B(x,ϵ)
ϕ(f(x′)f(x)/λ),

(11)

где ψ – некоторая функция, определяемая свойствами
функции потерь ϕ.

Теорема II.4 (Нижняя оценка робастной ошибки).
Пусть |Rd| ≥ 2.
При выполнении предположения 1 для любой неотри-

цательной функции потерь ϕ такой, что ϕ(t) → 0 при
t → +∞, любого ξ > 0 и любого θ ∈ [0, 1] существуют
распределение на Rd × {±1}, функция f : Rd → R и
параметр λ > 0 такие, что Rrob(f)−R∗nat = θ и

ψ

(
θ − E max

x′∈B(x,ϵ)
ϕ(f(x′)f(x)/λ)

)
≤ Rϕ(f)−R∗ϕ

≤ ψ
(
θ − E max

x′∈B(x,ϵ)
ϕ(f(x′)f(x)/λ)

)
+ ξ.

(12)

На основе полученных теоретических результатов ав-
торы предлагают следующую оптимизационную задачу
для обучения робастного классификатора:

min
f

E
{
ϕ(f(x)y)︸ ︷︷ ︸
точность

+ max
x′∈B(x,ϵ)

ϕ(f(x)f(x′)/λ)︸ ︷︷ ︸
робастность

}
, (13)

где первое слагаемое отвечает за точность классифи-
кации на исходных данных, а второе – за робастность к
состязательным возмущениям.

III. Случайное сглаживание по ℓp нормам
A. Неразмеченные данные для улучшения состязатель-
ной робастности
В работе [3] теоретически и эмпирическим доказыва-

ется, что состязательная робастность может быть зна-
чительно повышенна с помощью полуконтролируеимого
обучения.
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В теоретической части используется упрощённая гаус-
совская модель [5], демонстрирующая разрыв в сложно-
сти разработки между стандартным и робастным клас-
сификатором –для создания робастного классификатора
требуется значительно больше данных. Было доказано,
что неразмеченные данные устраняют этот разрыв: про-
стая процедура полуконтролируемого обучения позволя-
ет достичь высокой робастной точности используя то
же количество меток, что требуется для достижений
стандартной точности.
В экспериментах набор данных CIFAR-10 [6] расширя-

ется с помощью 500 тысяч неразмеченных изображений,
полученных из 80 миллионов изображений маленького
размера, а также используется робастное самообучение
для того, чтобы превзойти state-of-the-art робастной точ-
ности по нормам ℓ2 и ℓp:

a) Постановка полуконтролируемой задачи класси-
фикации: Рассматривается задача отображения x ∈ X ⊆
Rd на множество меток y ∈ Y . Пусть PX,Y обозначает
совместное распределение для пар (x, y), а PX – марги-
нальное распределение для X .
Обучающая выборка состоит из:
• Размеченных примеров: (X,Y ) = {(xi, yi)}ni=1 ∼

PX,Y
• Неразмеченных примеров: X̃ = {x̃j}ñj=1 ∼ PX
Цель состоит в обучении классификатора fθ : X → Y

из семейства параметризованных моделей θ ∈ Θ.
b) Критерии оценки качества: Для оценки эффек-

тивности методов используются следующие метрики:

Определение III.1 (Точность). Стандартная ошибка
классификации определяется как:

errstandard(fθ) := P(x,y)∼PX,Y
[fθ(x) 6= y] (14)

Определение III.2 (Точность на состязательных при-
мерах). Для возмущений в ℓp (p = 2, p = ∞) шаре
радиуса ϵ робастная ошибка определяется как:

errp,ϵrobust(fθ) := P(x,y)∼PX,Y
[∃x′ ∈ Bpϵ (x) : fθ(x′) 6= y]

(15)

где Bpϵ (x) := {x′ ∈ X | ‖x′−x‖ℓp ≤ ϵ} – ℓp шар радиуса
ϵ с центром в x.

Определение III.3 (Сертифицированная точность).
Классификатор fθ имеет сертифицированную точность
ξ по норме ℓp, если можно доказать, что:

errp,ϵrobust(fθ) ≤ 1− ξ (16)

1) Алгоритм самообучения: Рассматривается алго-
ритм обучения с учителем A, который сопоставляет
набор данных (X,Y ) с параметрами модели θ. Самообу-
чение представляет собой расширение A до полуконтро-
лируемого обучения, состоящее из следующих этапов:
1) получение промежуточной модели θ̂intermediate =

A(X,Y );
2) генерация псевдоразметки с помощью промежуточ-

ной модели ỹi = fθ̂intermediate(x̃i) for i ∈ [ñ];
3) объединение исходных данных и данных с псевдо-

разметкой и обучение финальной модели θ̂final =
A([X, X̃], [Y, Ỹ ]).

B. Случайное сглаживание по норме ℓ1
В работе [2] рассматривается сертифицированная со-

стязательная робастность сглаженных классификаторов
по норме ℓ1. В отличие от гауссовского случайного
сглаживания, приводящего к ℓ2-гарантиям, авторы ис-
пользуют равномерный шум с носителем ℓ∞-типа.
Сертификация робастности формулируется не через

явный радиус в ℓ1-норме, а через оценку относительного
объёма пересечения носителей распределений шума до
и после возмущения входа. Сглаженный классификатор
сохраняет предсказание до тех пор, пока объём пересече-
ния двух сдвинутых ℓ∞-кубов остаётся больше разности
вероятностей между наиболее вероятным и вторым по
вероятности классами.
Наряду с этим показывается, что ограничения по нор-

ме ℓ1 возникают как достаточное условие ненулевого
объёма пересечения, то есть ℓ1-шар задаёт консерватив-
ное описание множества сертифицированно допустимых
возмущений, но не является точной формой этого мно-
жества.
Ключевым вкладом работы является учет естествен-

ных box-ограничений входных данных (например, x ∈
[0, 1]d для изображений). Авторы показывают, что учет
усеченного носителя шума увеличивает объём пересече-
ния распределений при сдвиге и, как следствие, приво-
дит к более сильным сертификационным гарантиям без
изменения базового классификатора.

IV. Метрики
Эффективность сертификации робастности моделей

может быть оценена различными способами. Основные
метрики, используемые в качестве критериев оценки
качества будут приведены в данном разделе.

Определение IV.1. Сертифицированная точность на
тестовом множестве в радиусе r – доля тестового мно-
жества, классифицированная классификатором g кор-
ректно с предсказанием, которое сертифицированно ро-
бастно в ℓ2-шаре радиуса r;

Определение IV.2. Приблизительная сертифицирован-
ная точность на тестовом множестве – доля тестового
множества, которую процедура Certify из алгоритма 1
классифицирует корректно и сертифицирует робастность
с радиусом R ≥ r.

Определение IV.3. Робастная точность классификато-
ра f определяется как:

Arob(f) = 1−Rrob(f), (17)

где Rrob(f) — робастная ошибка, определенная в урав-
нении (5).

Определение IV.4. Естественная точность классифи-
катора f определяется как:

Anat(f) = 1−Rnat(f), (18)

где Rnat(f) — естественная ошибка классификации,
определенная в уравнении (6).

Данные метрики IV.3, IV.4 позволяют количественно
оценить компромисс между робастностью и точностью
классификации: высокая робастная точность Arob(f) ука-
зывает на устойчивость модели к состязательным атакам,
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в то время как высокая естественная точность Anat(f)
свидетельствует о хорошей производительности на ис-
ходных данных без возмущений.

Определение IV.5. Эмпирическая робастная точность
– доля тестового множества, атакованного различными
атаками (SmoothAdv [7], случайными атаками или адап-
тивными атаками (Random+ и PGD [8])), которую сгла-
женный классификатор g классифицирует корректно.

Определение IV.6. Средний радиус сертификации
(ACR) – для каждого тестового примера (x, y) и моде-
ли g оценивается радиус сертификации CR(g;x, y) V.8.
Средний радиус сертификации вычисляется как:

ACR =
1

|Stest|
∑

(x,y)∈Stest

CR(g;x, y), (19)

где Stest – тестовое множество.

Определение IV.7. Верифицированная ошибка – доля
тестовых примеров с возмущениями по норме ℓ∞, на
которых модель даёт неверные предсказания.

Определение IV.8. Способ оценки качества для top-k
предсказаний VI-C:
• для каждого примера x с меткой l вычисляется сер-
тифицированный радиус Rl с помощью алгоритма 6;

• вычисляется сертифицированная top-k точность в
радиусе r как доля тестового множества, чей сер-
тифицированный радиус составляет как минимум r.

Помимо описанных выше метрик используются также
и другие критерии, в зависимости от решаемой задачи. К
примеру, в методах, которые развивают идеи случайного
сглаживания в задаче сегментации могут быть использо-
ваны следующие метрики: mIoU (mean Intersection over
Union), cредняя точность по пикселям, процент воздер-
жаний (%∅) (доля пикселей, для которых модель воз-
держалась от прогноза) Кроме того, для оценки качества
методов используется стандартная метрика Accuracy, а
также время выполнения.

V. Модификация процесса обучения

A. SmoothAdv: состязательное обучение сглаженных
классификаторов

В работе [7] авторы впервые демонстрируют атаку на
сглаженный классификатор и ее применение для состя-
зательного обучения сглаженных моделей. Кроме того,
представлено более краткое доказательство теоремы II.1
через нелинейное свойство Липшица сглаженного клас-
сификатора.
Для демонстрации атаки дается расширенное опреде-

ление сглаженного классификатора через мягкие класси-
фикаторы.

Определение V.1. Мягкий классификатор – это функция
F : Rd → P (Y), где P (Y) обозначает множество ве-
роятностных распределений над множеством классов Y .
Нейронные сети обычно выдают мягкое распределение,
а затем применяется операция argmax для получения
финального предсказания (жесткий классификатор).

Алгоритм 2 SmoothAdv: состязательное обучение сгла-
женных классификаторов
1: function TrainMiniBatch((x(1), y(1)), (x(2), y(2)), …, (x(B), y(B)))
2: Attacker ← (SmoothADVPGD or SmoothADVDDN )
3: Generate noise samples ϵ(j)i ∼ N (0, σ2I) for 1 ≤ i ≤ m, 1 ≤ j ≤ B
4: L← [] # Список состязательных примеров для обучения
5: for 1 ≤ j ≤ B do
6: x̂(j) ← x(j) # Инициализация состязательного примера
7: for 1 ≤ k ≤ T do
8: Обновить x̂(j) согласно k-му шагу Attacker, используя
9: шумы ϵ

(j)
1 , ϵ(j)2 , …, ϵ(j)m для оценки градиента функции потерь

сглаженной модели согласно уравнению
10: (23)
11: # Переиспользование шумов между шагами атаки
12: end
13: Добавить в L: ((x̂(j) + ϵ

(j)
1 , y(j)), (x̂(j) + ϵ

(j)
2 , y(j)), . . . , (x̂(j) +

ϵ(j)m , y(j)))
14: # Переиспользование шумов для аугментации данных
15: end
16: Выполнить обратное распространение ошибки на множестве L с соответ-

ствующим шагом обучения

Определение V.2. Мягкому классификатору F соответ-
ствует сглаженный мягкий классификатор G : Rd →
P (Y), определенный как:

G(x) = (F ∗N (0, σ2I))(x) = Eϵ∼N (0,σ2I)[F (x+ϵ)], (20)

где ∗ обозначает операцию свертки с гауссовским ядром.

Пусть f(x) – жесткий классификатор, а g – соот-
ветствующий сглаженный жесткий классификатор. По-
иск состязательных примеров для сглаженного жест-
кого классификатора g является сложной задачей из-
за недифференцируемости операции argmax. Поэтому
авторы предлагают искать состязательные примеры для
сглаженного мягкого классификатора G.
Для пары (x, y) требуется найти точку x̂, которая

максимизирует функцию потерь G в ℓ2-шаре вокруг x.
В качестве функции потерь выбрана кросс-энтропия ℓCE.

Определение V.3. Состязательное возмущение для
сглаженного мягкого классификатора определяется как:

x̂ = arg max
∥x′−x∥ℓ2≤ϵ

ℓCE(G(x
′), y)

= arg max
∥x′−x∥ℓ2≤ϵ

(
− logEϵ∼N (0,σ2I)[(F (x

′ + ϵ))y]
)
,

(21)
где (F (x′))y обозначает вероятность класса y согласно
выходу классификатора F на входе x′.

Данная формула представляет функцию потерь для
SmoothAdv – атаки на сглаженный классификатор. Оп-
тимизация проводится с помощью методов Projected
Gradient Descent (PGD) [8] и его вариантов.
1) Алгоритм состязательного обучения: Оптимиза-

ция функции потерь проводится методами первого по-
рядка: PGD [8] и DDN [9] (Decoupled Direction and Norm).
Основная вычислительная задача при реализации данных
методов – вычисление градиента функции потерь по
переменной x′ для заданной точки (x, y). Пусть J(x′) =
ℓCE(G(x

′), y) – функция потерь. Тогда:

∇x′J(x′) = ∇x′
(
− logEϵ∼N (0,σ2I)[(F (x

′ + ϵ))y]
)
. (22)

Поскольку точное вычисление данного градиента яв-
ляется вычислительно затратным, применяются методы
Монте-Карло. Из гауссовского распределения генериру-
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ются выборки шума ϵ1, . . . , ϵm ∼ N (0, σ2I), и математи-
ческое ожидание заменяется выборочным средним:

∇x′J(x′) ≈ ∇x′

(
− log

(
1

m

m∑
i=1

(F (x′ + ϵi))y

))
. (23)

Поскольку вычисления становятся затратными с ро-
стом m, на практике для состязательного обучения ис-
пользуются значения mtrain ∈ {1, 2, 4, 8}. Для оцен-
ки качества применяются большие значения mtest ∈
{1, 4, 8, 16, 64, 128}. Следует отметить, что хотя оценка
функции потерь сходится к истинному значению, она
представляет собой смещенную оценку градиента.
2) Альтернативный подход с использованием леммы

Штейна: Рассмотрим альтернативный способ оптимиза-
ции функции потерь. Поскольку логарифм не изменяет
argmax, достаточно минимизировать G(x′)y относитель-
но нормы ℓ2:

∇x′(G(x′)y) = Eϵ∼N (0,σ2I)[∇x′(F (x′ + ϵ))y]

= Eϵ∼N (0,σ2I)

[ ϵ
ϵ2
· (F (x′ + ϵ))y

]
,

(24)

где последнее равенство следует из леммы Штейна
для гауссовских распределений. Для заданного сглажен-
ного классификатора g используются алгоритмы Predict
и Certify, аналогичные представленным в разделе 1.

B. MACER: максимизация радиуса сертификации
В работе [10] авторы предлагают непосредственно

максимизировать радиус сертификации R без конкрети-
зации каких-либо атак и утверждают, что обученная мо-
дель способна достичь доказанной робастности против
любой возможной атаки в данном радиусе. В отличие
от других методов максимизации радиуса сертификации,
предложенный подход применим к архитектурам произ-
вольного размера.
Рассмотрим стандартную задачу классификации с рас-

пределением данных pdata над парами (x, y), где x ∈ X ⊂
Rd и y ∈ Y = {1, 2, . . . ,K}. Обычно распределение
pdata неизвестно, и доступно лишь обучающее множество
S = {(x1, y1), . . . , (xn, yn)}. Обозначим p̂data эмпириче-
ское распределение (равномерное распределение над S).

Определение V.4. Пусть fθ ∈ F – параметризованный
классификатор fθ : X → Y . Состязательный пример
x′ = x + δ для классификатора fθ – это возмущенный
вход, такой что fθ корректно классифицирует исходный
пример x, но некорректно классифицирует x′, при усло-
вии ‖δ‖ℓ2 ≤ ϵ.

Определение V.5. Модель fθ называется ℓϵ2-робастной
в точке (x, y), если она корректно классифицирует x
как y и для всех возмущений δ с ‖δ‖ℓ2 ≤ ϵ модель
классифицирует x+ δ как y.

В задаче робастной классификации цель состоит в
поиске модели, которая является ℓϵ2-робастной в точке
(x, y) с наибольшей вероятностью над распределением
(x, y) ∼ pdata для заданного ϵ > 0.
По определению, ℓϵ2-робастность классификатора fθ в

любой точке (x, y) зависит от радиуса наибольшего ℓ2-
шара с центром в x, в котором fθ не изменяет своего
предсказания.

Определение V.6. Радиус робастности классификатора
fθ в точке (x, y) определяется как:

R(fθ;x, y) =

{
inffθ(x′) ̸=fθ(x) ‖x′ − x‖ℓ2 , если fθ(x) = y

0, если fθ(x) 6= y
(25)

Поскольку целью является обучение модели, которая
является ℓϵ2-робастной в точке (x, y) с наибольшей веро-
ятностью над (x, y) ∼ pdata для заданного ϵ > 0, задача
сводится к минимизации математического ожидания 0/1-
ошибки:

Определение V.7. Робастная 0/1-ошибка определяется
как:

ℓ
0/1
ϵ-rob(fθ;x, y) := 1− 1R(fθ;x,y)≥ϵ, (26)

где 1(·) – индикаторная функция.

Соответственно, минимизируется следующая функция
потерь:

L
0/1
ϵ-rob := E(x,y)∼pdataℓ

0/1
ϵ-rob(fθ;x, y). (27)

Определение V.8. Радиус сертификации CR(fθ;x, y)
представляет нижнюю границу радиуса робастности
R(fθ;x, y) и удовлетворяет условию:

0 ≤ CR(fθ;x, y) ≤ R(fθ;x, y) ∀fθ, x, y. (28)

Радиус сертификации обеспечивает гарантированную
верхнюю границу для 0/1-ошибки робастной класси-
фикации. Соответствующая ошибка определяется через
радиус сертификации:

ℓ
0/1
ϵ-cert(fθ;x, y) := 1− 1CR(fθ;x,y)≥ϵ, (29)

то есть пример считается корректно классифицирован-
ным только если радиус сертификации достигает значе-
ния ϵ.

L
0/1
ϵ-cert(fθ) := E(x,y)∼pdataℓ

0/1
ϵ-cert(fθ;x, y). (30)

Пусть gθ – сглаженный классификатор, соответству-
ющий базовому классификатору fθ.
Для минимизации ℓ0/1ϵ-rob или ℓ

0/1
ϵ-cert предлагается деком-

позиция ошибки на две компоненты: ошибку классифи-
кации ℓC(gθ;x, y) и ошибку робастности ℓR(gθ;x, y):

ℓ(gθ;x, y) = ℓC(gθ;x, y) + ℓR(gθ;x, y). (31)

Пусть ĝ(x) – сглаженный мягкий классификатор, а
zθ – выход нейронной сети с примененной функцией
softmax.
После наложения определенных ограничений на ком-

поненты ошибки получается следующая функция потерь:

ℓ(ĝθ;x, y) = ℓC(ĝθ;x, y) + ℓR(ĝθ;x, y)

= − log ẑyθ (x)
+ λmax{ϵ+ ϵ̂− CR(ĝ;x, y), 0} · 1{ĝθ(x)=y}
= − log ẑyθ (x)

+
λσ

2
max{γ − ξ̂θ(x, y), 0} · 1{ĝθ(x)=y},

(32)
где:
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Алгоритм 3 MACER: Робастное обучение через макси-
мизацию радиуса сертификации
1: Input: Обучающее множество p̂data, уровень шума σ, количество гауссов-

ских примеров k, trade-off фактор λ, hinge фактор γ, обратная температура
β, параметры модели θ

2: for i = 1, . . . , l do
3: Сэмплировать минибатч (x1, y1), · · · , (xn, yn) ∼ p̂data

4: Для каждого xi, сэмплировать k н.о.р.с.в. гауссовские примеры

xi1, · · · , xik ∼ N (x, σ
2
I)

5: Вычисить эмпирические матожидания:

ẑθ(xi)←
k∑

j=1

zθ(xij)/kfori = 1, · · · , n

6: Вычислить

Gθ = {(xi, yi) : g̃θ(xi) = yi} : (xi, yi) ∈ Gθ ⇔ yi = arg max
c∈Y

ẑ
c
θ(xi)

7: Для каждого (xi, yi) ∈ Gθ , вычислить

ŷi : ŷi ← arg max
c∈Y\{yi}

ẑ
c
θ(xi)

8: Для каждого (xi, yi) ∈ Gθ , вычислить

ξ̂θ(xi, yi) : ξ̂θ(xi, yi)← Φ
−1

(ẑ
yi
θ (xi))− Φ

−1
(ẑ

ŷi
θ (xi))

9: Обновить θ с помощью одного шага любого метода оптимизации первого
порядка для минимизации

−
1

n

n∑
i=1

log ẑyiθ (xi) +
λσ

2n

∑
(xi,yi)∈Gθ

max{γ − ξ̂θ(xi, yi), 0}

10: end for

• η1, . . . , ηk ∼ N (0, σ2I) — независимые одинаково
распределенные случайные величины;

• ẑθ =
1
k

∑k
j=1 zθ(x+ ηj) — эмпирическое математи-

ческое ожидание zθ(x+ η);
• ξ̂θ(x, y) = Φ−1(ẑyθ (x))− Φ−1(maxy′ ̸=y ẑy

′

θ (x)).
Во время обучения минимизируется

E(x,y)∼p̂dataℓ(ĝθ;x, y). Для упрощения реализации в
качестве гиперпараметра выбирается γ вместо ϵ̂.
Обратная температура функции softmax β также
является гиперпараметром метода.

C. SmoothMix: обучение откалиброванных по уверенно-
сти сглаженных классификаторов для сертифицирован-
ной робастности.
В работе [11] предлагается модификация процесса

обучения для повышения качества сертифицированной
робастности сглаженных классификаторов. Авторы вы-
являют ограничения метода SmoothAdv [7] и предлага-
ют альтернативный подход к генерации состязательных
примеров.
1) Мотивация и ограничения существующих методов:

Основным недостатком метода SmoothAdv является то,
что состязательные примеры генерируются с жестким
ограничением по ℓ2-расстоянию, что может приводить к
переобучению модели к конкретной норме возмущений.
Это ограничивает способность модели к обобщению и
может снижать достижимый радиус сертификации.

Определение V.9. Пусть f(x) = argmaxc∈Y F (x), где
F : Rd → P (Y) – мягкий классификатор V.1, а g –
соответствующий сглаженный классификатор. Неограни-
ченный состязательный пример для точки (x, y) опреде-
ляется как решение оптимизационной задачи:

x̃ := argmax
x′

(
L(g;x′, y)− β · ‖x′ − x‖2ℓ2

)
, (33)

где L – функция кросс-энтропии, β > 0 – гиперпара-
метр, регулирующий штраф за отклонение от исходного
примера x.

В отличие от стандартного подхода с жестким ограни-
чением ‖x′ − x‖ℓ2 ≤ ϵ, данная формулировка позволяет
алгоритму адаптивно выбирать оптимальное расстояние
возмущения в зависимости от локальных свойств функ-
ции потерь.
Аналогично методу SmoothAdv [7], для решения зада-

чи (33) используется приближение сглаженного класси-
фикатора G := Eϵ∼N (0,σ2I)[F (x+ ϵ)] V.2.
Процесс поиска неограниченного состязательного при-

мера x̃ реализуется итерационно за T шагов:

x̃(t+1) := x̃(t) + α · ∇xJ(x̃(t))
‖∇xJ(x̃(t))‖ℓ2

, (34)

где J(x) := − log
(

1
m

∑m
i=1 Fy(x+ ϵi)

)
и ϵi ∼ N (0, σ2I)

– выборки гауссовского шума для аппроксимации мате-
матического ожидания.
2) Калибровка достоверности через интерполяцию:

Ключевое наблюдение авторов заключается в том, что
при переходе от исходного примера x к неограниченно-
му состязательному примеру x̃ достоверность модели в
предсказании класса изменяется резко и нелинейно, что
может приводить к плохой калибровке вероятностей.

Рис. 3. Изменение достоверности модели при переходе от исходного
примера к состязательному. Наблюдается резкое изменение вероятно-
стей, что указывает на необходимость калибровки.

Для решения проблемы плохой калибровки предлага-
ется расширение обучающего множества с использова-
нием интерполяции между исходными и состязательны-
ми примерами:

Определение V.10. SmoothMix интерполяция определя-
ется как:

xmix := (1− λ) · x+ λ · x̃(T ), (35)

ymix := (1− λ) ·G(x) + λ · 1
C
, (36)

где λ ∼ U([0, 12 ]), C = |Y| – количество классов, и 1
C

представляет равномерное распределение над классами.

3) Функция потерь SmoothMix: Итоговая функция по-
терь комбинирует стандартную функцию потерь для
естественных примеров с функцией потерь для интер-
полированных примеров:

Определение V.11. Пусть Lnat := Eϵ∼N (0,σ2I)[L(F (x +
ϵ), y)] — функция потерь для естественных примеров.
Тогда общая функция потерь SmoothMix определяется
как:

L := Lnat + η · Lmix, (37)

где η > 0 — параметр, контролирующий баланс между
точностью на естественных примерах и робастностью, а
Lmix — функция потерь для интерполированных приме-
ров.
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Алгоритм 4 SmoothMix обучение
Require: Сэмплировать (x, y) ∼ P . фактор сглаживания σ. количество шумов

m. число шагов T . размер шага α. коэффициент регуляризации η > 0.

1: Sample ϵ1, · · · , ϵm ∼ N (0, σ2I), и λ ∼ U(
[
0, 1

2

]
)

2: Найти состязательный пример
3: x̃(0), G(x(0))← x, 1

m

∑m
i=1 F (x+ ϵi)

4: for t = 0 to T − 1 do
5: J(x̃(t))← − logGy(x̃

(t))

6: x̃(t+1) ← x̃(t) + α · ∇xJ(x̃(t))

∥∇xJ(x̃(t))∥2
7: G(x̃(t+1))← 1

m

∑m
i=1 F (x̃(t+1) + ϵi)

8: end for use_single_step x← x̃(1)

9: Вычислить лосс SmoothMix
10: xmix, ymix ← ((1− λ) · x+ λ · x̃(T )), ((1− λ) ·G(x) + λ · ⊮

C )
11: for i = 1 to m do
12: Lnat

i , Lmix
i ← L(F (x+ ϵi), y),L(F (xmix + δi), y

mix)
13: end for
14: L← 1

m

∑
i(L

nat
i + η · Lmix

i )

D. Консистентная регуляризация для сертифицирован-
ной робастности
В работе [12] предлагается дополнить стандарт-

ную схему обучения консистентной регуляризацией
(consistency regularization) с целью уменьшения вариа-
тивности предсказаний сглаженного классификатора под
действием гауссовского шума для заданного входа x.
1) Декомпозиция робастной ошибки: Аналогично ме-

тоду MACER [10], авторы минимизируют 0/1-ошибку ро-
бастной классификации, определенную в уравнении (26),
путем декомпозиции на ошибку классификации и ошиб-
ку робастности.

Определение V.12. Робастная 0/1-ошибка с использо-
ванием радиуса сертификации декомпозируется следую-
щим образом:

E(x,y)∼S [1− 1R(g;x,y)≥ϵ]

= E[1g(x) ̸=y]︸ ︷︷ ︸
ошибка классификации

+E[1g(x)=y,R(g;x,y)<ϵ]︸ ︷︷ ︸
ошибка робастности

, (38)

где:
• S = {(xi, yi)}ni=1 – обучающее множество с x ∈ Rd,
y ∈ Y = {1, . . . ,K};

• g – сглаженный классификатор;
• R(g;x, y) – нижняя граница радиуса робастности:
R(g;x, y) ≥ σ · Φ−1(pA) =: R(g;x, y);

• ϵ > 0 – заданная константа робастности.

2) Мотивация консистентной регуляризации: Пред-
полагая, что ошибка классификации может быть оптими-
зирована с помощью стандартных функций потерь (на-
пример, кросс-энтропии), основное внимание уделяется
минимизации ошибки робастности. При этом возникают
следующие вычислительные сложности:
1) Точное вычисление сглаженного классификатора g

является вычислительно неразрешимой задачей;
2) Сглаженный классификатор g практически недиф-

ференцируем при аппроксимации методами Монте-
Карло.

Для преодоления данных сложностей рассматривается
достаточное условие минимизации 0/1-ошибки робастно-
сти.

Лемма V.1 (Достаточное условие для робастности).
Пусть f(x) = argmaxk∈Y F (x) для дифференцируемой
функции F : Rd → Y . Если F (x + δ) является констан-
той по δ для данного x, то робастная ошибка равна

нулю, поскольку P(f(x + δ) = g(x)) = 1 независимо от
g.

Данное наблюдение приводит к следующей верхней
оценке ошибки робастности:

E(x,y)∼S [1g(x)=y,R(g;x,y)≤ϵ]

= E[1g(x)=y,R(g;x,g(x))≤ϵ]

≤ E[1R(g;x,g(x))≤ϵ]

= E[1P(f(x+δ)=g(x))<Φ(ϵ/σ)],

(39)

где последнее равенство следует из определения нижней
границы радиуса робастности.
Предполагая, что ошибка классификации может быть

оптимизирована с помощью стандартной функции по-
терь, например, кросс-энтропией, сфокусируемся на том,
как минимизировать ошибку робастности. При этом воз-
никают следующие сложности: точное вычисление g
является трудновыполнимой задачей, g - практически
не дифференцируема когда ее приближают методами
Монте-Карло.
Чтобы преодолеть эти сложности, заострим внимание

на достаточном условии минимизации 0/1 ошибки ро-
бастности. Предположим, что f(x) = argmaxk∈Y F (x)
(классификатор) для дифференцируемой функции F . За-
метим, что робастная ошибка будет равна нулю, если
F (x + δ) равна константе для данного x. Это влечет
то, что Pδ(f(x + δ) = g(x)) = 1 независимо от g и
минимизирует верхнюю грань робастной ошибки из-за
следующего:

E(x,y)∈S [1g(x)

= y,R(g; x, y) ≤ ϵ] =
= [1g(x)=y,R(g;x,g(x))≤ϵ] ≤

≤ [1R(g;x,g(x))≤ϵ] = [1Pδ(f(x+δ)=g(x))<Φ( e
σ

)],

(40)

3) Консистентная регуляризация: На основе данного
анализа предлагается оптимизировать сглаженный клас-
сификатор g путем регуляризации функции F (x+ δ) для
обеспечения её консистентности по возмущению δ.

Определение V.13. Консистентная регуляризация опре-
деляется как:

Lcon := λ ·Eδ∼N (0,σ2I)[KL(G(x)‖F (x+δ))]+η ·H(G(x)),
(41)

где:
• G(x) := Eδ∼N (0,σ2I)[F (x + δ)] – усредненное рас-
пределение;

• KL(·‖·) – дивергенция Кульбака-Лейблера;
• H(·) – энтропия Шеннона;
• λ, η > 0 – гиперпараметры регуляризации.

Данная регуляризация принуждает функцию F (и
соответственно классификатор f ) уменьшать вариатив-
ность предсказаний под действием гауссовского шума
для заданного входа x.

Замечание V.1. При λ = η предложенная регуляризация
включает в себя кросс-энтропию: Eδ[L(F (x+ δ), G(x))].
На практике параметр λ оказывает более значительное
влияние на соотношение между точностью и робастно-
стью по сравнению с η.
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Рис. 4. Сравнение логарифмических распределений под действием
гауссовского шума для фиксированного примера из набора данных
MNIST [13]. Консистентная регуляризация приводит к более стабиль-
ным предсказаниям.

4) Общая функция потерь: Полная функция потерь
комбинирует стандартную функцию потерь для класси-
фикации с консистентной регуляризацией:

Определение V.14. Общая функция потерь с конси-
стентной регуляризацией:
L := L

nat
+ L

con

= Eδ∼N(0,σ2I)[L(F (x+ δ), y) + λ · KL(G(x)∥F (x+ δ))] + η ·H(G(x))

≈
1

m

m∑
i=1

[L(F (x+ δi), y) + λ · KL(G(x)∥F (x+ δi))] + η ·H(G(x)),

(42)

где δi ∼ N (0, σ2I) – выборки гауссовского шума
для аппроксимации математического ожидания методом
Монте-Карло.

Данная функция потерь может быть использована с
любой базовой функцией потерь для классификации Lnat,
при условии что она эффективно минимизирует ошибку
сглаженного классификатора g.

E. Обучение, основанное на уверенности сглаженного
классификатора для сертифицированной робастности
В данной работе [14] предлагается модификация про-

цесса обучения для повышения качества сертифициро-
ванной робастности. Рассматриваются два критических
случая, для которых вычисленный радиус сертификации
является небольшим, и предлагается процедура обуче-
ния, штрафующая данные ситуации.
Для удобства введём обозначение:

pf (x, y) := P(f(x+ ϵ) = y) (43)

где ϵ ∼ N (0, σ2I) – случайное возмущение.
1) Bottom-K функция потерь для примеров с низ-

кой уверенностью модели: Рассмотрим случай, когда
pf (x, y) � 1, то есть сглаженный классификатор g де-
монстрирует низкую уверенность для входа x. В данной
ситуации радиус сертификации, получаемый из основной
теоремы о случайном сглаживании, будет небольшим.
Для исправления этого недостатка авторы предлагают
использовать Bottom-K функцию потерь.
Процедура заключается в выборке M независимых

одинаково распределённых возмущений ϵ1, ϵ2, . . . , ϵM ∼
N (0, σ2I). Заметим, что индикаторные переменные
1[f(x + ϵi) = y] также являются независимыми случай-
ными величинами с распределением Бернулли с пара-
метром pf (x, y). Следовательно, количество корректных
предсказаний следует биномиальному распределению:∑
i 1[f(x+ ϵi) = y] ∼ Bin(M,pf (x, y)).
В качестве функции потерь для данного случая пред-

лагается минимизировать кросс-энтропию наK изM об-
разцов, упорядоченных по возрастанию значения функ-
ции потерь:

Llow :=
1

M

K∑
i=1

LCE(F (x+ ϵπ(i)), y) (44)

где K ∼ Bin(M,pf (x, y)), F – модель f без опера-
ции argmax, π(i) – индекс i-го наименьшего значения
функции потерь среди M примеров.
Поскольку в начале обучения возможна ситуация

pf (x, y) ≈ 0, предлагается использовать модифицирован-
ное значение K+ := max(K, 1).
2) Функция потерь наихудшего случая для примеров

с высокой уверенностью модели: Рассмотрим альтерна-
тивный случай, когда pf (x, y) ≈ 1, то есть сглаженный
классификатор g демонстрирует высокую уверенность
для входа x. В процессе обучения с гауссовым шумом,
из-за редкости появления других классов в окрестности
x, алгоритм обучения может не учитывать минимизацию
ошибки на данных примерах. Однако впоследствии они
могут появиться при практическом использовании, что
приведёт к снижению сертифицированного радиуса.
Для решения данной проблемы предлагается поиск

образцов с наибольшей ошибкой. Выполняется выборка
ϵ1, ϵ2, . . . , ϵM ∼ N (0, σ2I), но вместо использования
значения F (x+ϵi) непосредственно, для каждого ϵi про-
изводится поиск наихудшего случая в его окрестности.
Функция потерь для данного случая определяется как:

Lhigh := max
i

max
∥ϵ∗i−ϵi∥ℓ2≤δ

KL(F (x+ ϵ∗i ), ŷ) (45)

где KL(·, ·) – дивергенция Кульбака-Лейблера. Выбор
данной метрики обосновывается следующими соображе-
ниями:
1) Если ŷ представляет собой вектор с единицей на

позиции правильной метки и нулями в остальных
позициях (жёсткая разметка), то дивергенция KL
эквивалентна кросс-энтропии.

2) Данный выбор позволяет использовать мягкую раз-
метку, то есть распределение вероятностей по раз-
личным классам.

3) Мотивация подкреплена результатами работы [12],
где показано, что устойчивость предсказаний к
гауссову шуму различной интенсивности контро-
лирует компромисс между точностью и робастно-
стью.

Для получения разметки ŷ используется результат
вспомогательной модели f (с softmax-слоем без опера-
ции argmax), предварительно обученной на том же набо-
ре данных. Для решения внутренней задачи максимиза-
ции применяется алгоритм проекционного градиентного
спуска (PGD) [8] с T итерациями и размером шага 2δ/T .
3) Итоговая процедура обучения: Функция Lhigh

должна применяться только в случае pf (x, y) ≈ 1. Од-
нако в процессе обучения точное вычисление pf (x, y)
невозможно, поэтому используется эмпирическая оцен-
ка:

p̂f (x, y) :=
1

M

M∑
i=1

1[f(x+ ϵi) = y] (46)

При условии K ∼ Bin(M, p̂f (x, y)) итоговая функция
потерь определяется как:

LCAT−RS := Llow + λ · 1[K =M ] · Lhigh (47)

9
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Гиперпараметр λ контролирует компромисс между
точностью и робастностью модели.
4) Базовые методы для сравнения: В качестве базо-

вых методов рассматриваются: Gaussian training, Stability
training, SmoothAdv [7], MACER [10], Consistency [12],
SmoothMix [11].

VI. Быстрое сертифицированное робастное обучение с
коротким разогревом

В работе [15] предлагается новая инициализация весов
для IBP-обучения [16], направленная на сертифициро-
ванное робастное обучение. Демонстрируются преиму-
щества использования батч-нормализации и предлагает-
ся специализированная регуляризация для стабилизации
процесса обучения.

Определение VI.1. IBP (Interval Bound Propagation) [16]
– метод для обучения верифицированно робастных
классификаторов. Данный подход позволяет определить
функцию потерь для минимизации верхней границы мак-
симального расстояния между любыми двумя парами
логитов при условии, что входные данные могут быть
возмущены в пределах шара по норме ℓ∞.

1) Сертифицированное робастное обучение: Рас-
смотрим основные проблемы существующего IBP-
обучения:
• взрывной рост границ при инициализации;
• дисбаланс между состояниями ReLU-
активаций [17].

Обучение робастной нейронной сети в общем случае
можно сформулировать как минимаксную задачу опти-
мизации:

min
θ

E(x,y)∈X

[
max
ϵ∈∆(x)

L(fθ(x+ ϵ), y)

]
(48)

где fθ – параметризованная нейронная сеть, L –
функция потерь. Эмпирические методы состязательного
обучения решают внутреннюю задачу максимизации с
помощью состязательных атак, а затем внешнюю задачу
как стандартное обучение глубокой нейронной сети [9],
дополненной возмущениями ϵ.
Рассмотрим аффинный слой нейронной сети hi =

Wizi−1 + bi. Вычислим для него IBP-границы согласно
определению VI.1:

hi =Wi,+zi−1 +Wi,−zi−1 + bi,

hi =Wi,+zi−1 +Wi,−zi−1 + bi
(49)

где:
• Wi,+ – положительные элементы матрицы Wi,
когда остальные элементы равны нулю; аналогично
определяется Wi,−;

• hi – функция пост-активаций от предыдущего слоя
zi, то есть hi(zi);

• IBP-границы гарантируют выполнение неравенства
hi ≤ hi(zi) ≤ hi для всех zi ≤ zi ≤ zi (поэлемент-
ное сравнение).

Разрыв между границами определяется как:

∆i = hi − hi = |Wi|(zi−1 − zi−1) = |Wi|∆i−1 (50)

где ∆i – разрыв между верхней и нижней границами
(разность между максимальным и минимальным элемен-
тами в слое после активации), |Wi| – поэлементное
абсолютное значение.
При инициализации предполагается, что все элементы

Wi распределены согласно симметричному относительно
нуля распределению с нулевым средним и дисперсией
σ2
i . Пусть E[·] – математическое ожидание данного

распределения. Тогда:

E[∆i] =
ni
2
E[|Wi|]E[∆i−1] (51)

Эмпирически можно оценить E[∆i] на батче данных,
вычислив среднее значение. Обозначим эмпирическую
оценку как Ê[∆i].

Определение VI.2. Коэффициент прироста разности при
распространении границ от слоя i − 1 к слою i опреде-
ляется как:

E[∆i]

E[∆i−1]
=
ni
2
E[|Wi|] (52)

Границы считаются стабильными, когда данное отноше-
ние близко к единице.

Следующая проблема связана с дисбалансом ReLU-
активаций [17], проявляющимся в высоком проценте
неактивных нейронов.

A. Предложенный метод
Метод включает следующие компоненты:
1) Специализированная инициализация: Каждый эле-

мент Wi инициализируется независимо согласно нор-
мальному распределению N (0, σ2

i ), где параметр σ2
i вы-

бирается таким образом, чтобы обеспечить ni

2 E[|Wi|] =
1.
Учитывая, что E[|Wi|] =

√
2
πσi, получаем:

σi =

√
2π

ni
(53)

2) Батч-нормализация: Эмпирически показано, что
добавление батч-нормализации для каждого аффинного
слоя существенно устраняет дисбаланс ReLU-активаций.
3) Регуляризация разрыва между границами: Предла-

гается следующий регуляризатор:

Ltightness =
1

τm

m∑
i=1

ReLU

(
τ − Ê[∆i]

Ê[∆0]

)
(54)

где τ Ê[∆i] ≤ Ê[∆0] и 0 < τ ≤ 1. Штраф применяется
только при нарушении условия τ Ê[∆i] > Ê[∆0].
4) Балансировка ReLU-активаций: Определим ci =

(hi + hi)/2. Пусть αi – соотношение между вкладом
активных и неактивных нейронов в среднее значение
Ê[ci], а βi – соотношение между их вкладом в дисперсию
Var(ci) каждого слоя:

αi =

∑
j 1(hi,j > 0)ci,j

−
∑
j 1(hi,j < 0)ci,j

,

βi =

∑
j 1(hi,j > 0)(ci,j − Ê[ci])2∑
j 1(hi,j < 0)(ci,j − Ê[ci])2

(55)
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где αi, βi > 0. Активация считается сбалансированной,
когда αi и βi близки к единице. Накладываются ограни-
чения τ ≤ αi, βi ≤ 1/τ .
Регуляризация ReLU-активаций определяется как:

Lrelu =
1

τm

m∑
i=1

(
ReLU

(
τ −min

(
αi,

1

αi

))
+ ReLU

(
τ −min

(
βi,

1

βi

))) (56)

B. Процедура обучения
Базовая целевая функция для робастного обучения без

регуляризации:

Lrob = L(fθ, x, y, ϵ) (57)

где L(fθ, x, y, ϵ) ≥ max∥δ∥ℓ∞≤ϵ L(fθ(x+ δ), y).
В предложенном методе сначала выполняется ини-

циализация параметров согласно IBP-процедуре, затем
производится короткий этап разогрева с постепенным
увеличением ϵ от 0 до ϵtarget, где ϵtarget – целевой ра-
диус возмущения, обычно равный или незначительно
превышающий максимальный радиус возмущения для
тестового множества.
Итоговая целевая функция имеет вид:

L = Lrob + λ(Ltightness + Lrelu) (58)

где λ – коэффициент регуляризации, который в процессе
разогрева постепенно уменьшается от λ0 до 0 с ростом
ϵ согласно зависимости λ = λ0(1− ϵ/ϵtarget).
После завершения этапа разогрева используется толь-

ко L = Lrob для финального обучения с параметром
ϵtarget.

C. Сертифицированная робастность для top-k предска-
заний против состязательных возмущений с помощью
случайного сглаживания
В работе [18] авторы получают сертифицированный

радиус для top-k предсказаний. Более того, доказывается,
что данный сертифицированный радиус является опти-
мальным для гауссовского шума.
Пусть дан базовый классификатор f . Сглаженный

классификатор gk(x) возвращает набор из k меток с наи-
большими вероятностями pi на входе x. Цель – получить
радиус сертификации Rl такой, что l ∈ gk(x+δ) для всех
‖δ‖ℓ2 < Rl.

Теорема VI.1. (Сертифицированный радиус для top-k
предсказаний). Пусть дан входной пример x, произволь-
ный базовый классификатор f , случайное возмущение
ϵ ∼ N (0, σ2I), сглаженный классификатор g, произ-
вольная метка l ∈ {1, 2, . . . , c} и границы вероятностей
pl, p1, . . . , pl−1, pl+1, . . . , pc ∈ [0, 1], которые удовлетво-
ряют следующим условиям:

P(f(x+ ϵ) = l) ≥ pl и P(f(x+ ϵ) = i) ≤ pi, ∀i 6= l
(59)

где p и p обозначают нижнюю и верхнюю
границы p соответственно. Пусть pbk ≥ pbk−1

≥
. . . ≥ pb1 — наибольшие k вероятностей
среди {p1, . . . , pl−1, pl+1, . . . , pc}. Обозначим
St = {b1, b2, . . . , bt} — множество меток с

Алгоритм 5 Predict top-k
1: Вход: f , k, σ, x, n, α.
2: Выход: ABSTAIN или предсказанные top-k меток.
3: T ← ∅
4: counts ← SampleUnderNoise(f, σ, x, n)
5: c1, c2, . . . , ck+1 ← top-(k + 1) меток по частотам
6: nc1

, nc2
, . . . , nck+1

← counts[c1], counts[c2], . . . , counts[ck+1]

7: for t← 1 to k do
8: if BinomPValue(nct , nct + nct+1

, 0.5) ≤ α then
9: T ← T ∪ {ct}
10: else
11: return ABSTAIN
12: end if
13: end for
14: return T

наименьшими верхними границами вероятностей
среди k наибольших и pSt

=
∑t
j=1 pbj — сумму t верхних

границ вероятностей, где t = 1, 2, . . . , k. Тогда имеем:

l ∈ gk(x+ δ), ∀‖δ‖ℓ2 < Rl (60)

где Rl – единственное решение следующего уравнения:

Φ

(
Φ−1(pl)−

Rl
σ

)
−

k

min
t=1

Φ
(
Φ−1(pSt

) + Rl

σ

)
t

= 0 (61)

где Φ и Φ−1 – функция стандартного нормального
распределения и её обратная функция соответственно.

Теорема VI.2. (Оптимальность радиуса сертифика-
ции). Пусть выполнены условия pl +

∑k
j=1 pbj ≤ 1 и

pl +
∑
i=1,...,l−1,l+1,...,c pi ≥ 1. Тогда для любого возму-

щения ‖δ‖ℓ2 > Rl существует базовый классификатор
f , удовлетворяющий условию

P(f(x+ ϵ) = l) ≥ pl и P(f(x+ ϵ) = i) ≤ pi, ∀i 6= l
(62)

но при этом l /∈ gk(x+ δ).

Следствия из теорем VI.1 и VI.2:

Следствие VI.1. Полученный сертифицированный ради-
ус применим к любому базовому классификатору f

Следствие VI.2. Согласно уравнению (61), сертифици-
рованный радиус Rl зависит от σ, pl и {pbk , . . . , pb1}, за
исключением pl. Когда pl велико, а {pbk , . . . , pb1} малы,
радиус сертификации Rl больше. При Rl < 0 метка
l не входит в top-k меток, предсказанных сглаженным
классификатором, даже без добавления возмущения, то
есть l /∈ gk(x);

Следствие VI.3. При использовании случайного сглажи-
вания с гауссовским шумом без дополнительных предпо-
ложений о базовом классификаторе невозможно найти
ℓ2-радиус сертификации для top-k предсказаний больший,
чем Rl;

Следствие VI.4. При k = 1

Rl =
σ

2

(
Φ−1(pl)− Φ−1(pb1)

)
(63)

1) Методы оценки вероятностных границ: Рассмот-
рим методы, используемые в алгоритме 6:
• BinoCP – метод для оценки pl с помощью стандарт-
ного одностороннего метода Клоппера–Пирсона.
Здесь pi = 1 − pl для всех i 6= l. Детальная
процедура:
– выполняется выборка n случайных возмущений
ϵ1, ϵ2, . . . , ϵn ∼ N (0, σ2I);
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Алгоритм 6 Certify top-k
1: Вход: f , k, σ, x, l, n, µ, α.
2: Выход: ABSTAIN или Rl.
3: counts ← SampleUnderNoise(f, σ, x, n, α)
4: [pl, p1, . . . , pl−1, pl+1, . . . , pc]← BinoCP(counts, α) или SimuEM(counts,
α)

5: Rl ← 0
6: for t← 1 to k do
7: pSt

← min
(∑t

j=1 pbj , 1− pl
)

8: Rl
t ← BinarySearch(pl, pSt

, t, σ, µ)

9: if Rl
t > Rl then

10: Rl ← Rl
t

11: end if
12: end for
13: if Rl > 0 then
14: return Rl

15: else
16: return ABSTAIN
17: end if

– определяется счётчик для метки l: nl =∑n
j=1 1(f(x+ ϵj) = l), где nl ∼ Bin(n, pl);

– согласно методу Клоппера–Пирсона: pl =
B(α;nl, n−nl+1), где 1−α— уровень доверия
и B(α;u, v) — α-квантиль бета-распределения
с параметрами u, v.

• SimuEM – метод для совместной оценки pi и pl.
Пусть ni =

∑n
j=1 1(f(x + ϵj) = i) для всех i ∈

{1, 2, . . . , c}, где ni ∼ Bin(n, pi):
– сначала применяется метод Клоппера–Пирсона
для каждой метки i;

– затем получаются доверительные интервалы с
поправкой Бонферрони;

В результате:

pl = B
(α
c
;nl, n− nl + 1

)
(64)

pi = B
(
1− α

c
;ni + 1, n− ni

)
, ∀i 6= l (65)

VII. Случайное сглаживание и диффузионные модели

A. Сглаживание без шума: доказуемая защита для пре-
добученных классификаторов
В работе [19] предлагается подход, при котором к

входному изображению сначала применяется модель-
денойзер, а затем выполняется предсказание. Пусть дан
классификатор f и модель-денойзер Dθ : Rd → Rd,
тогда новый базовый классификатор определяется как
композиция: f ◦ Dθ : Rd → Y .

Рис. 5. Схема работы системы с денойзером

Сглаженный классификатор в данном случае опреде-
ляется следующим образом:

g(x) = argmax
c∈Y

P[f(Dθ(x+ ϵ)) = c], где ϵ ∼ N (0, σ2I)

(66)
Для каждого уровня шума σ обучается отдельный спе-

циализированный денойзер. Исследуются две функции
потерь для обучения денойзера Dθ:

1) Функция потерь среднеквадратичной ошибки:
Пусть дан неразмеченный набор данных S = {xi}
чистых изображений. Денойзер обучается минимизации
среднеквадратичной ошибки (MSE) между исходным
изображением xi и выходом денойзера Dθ(xi + ϵ), где
ϵ ∼ N (0, σ2I). Формально:

LMSE = ES,ϵ
[
‖Dθ(xi + ϵ)− xi‖2ℓ2

]
(67)

2) Функция потерь стабильности: Требуется функ-
ция потерь, которая учитывает также ошибку классифи-
кации. Пусть дан размеченный датасет S = {(xi, yi)}.
Денойзер обучается с нуля одновременно с задачей клас-
сификации зашумлённых изображений:

Lstab = ES,ϵ [LCE(F (Dθ(xi + ϵ)), f(xi))] , ϵ ∼ N (0, σ2I)
(68)

где f(x) = argmaxc∈Y F (x), LCE – функция кросс-
энтропийных потерь.
Данная функция потерь может использоваться в двух

режимах доступа к классификатору:
• Режим белого ящика: При наличии доступа к пре-
добученному классификатору возможно выполне-
ние обратного распространения ошибки для Lstab. В
данном режиме денойзеры обучаются с нуля путём
минимизации ошибки классификации с использова-
нием псевдо-меток, полученных от предобученного
классификатора.

• Режим чёрного ящика: Используются предобучен-
ные суррогатные классификаторы в качестве при-
ближения реальных классификаторов, которые пла-
нируется защищать. Денойзеры обучаются миними-
зировать функцию потерь стабильности (68) сур-
рогатных классификаторов. Эмпирически показано,
что денойзеры, обученные в данном режиме, обла-
дают свойством переносимости на другие классифи-
каторы.

VIII. Состязательная робастность бесплатно
В работе [20] демонстрируется, как можно достичь

современного уровня (state-of-the-art) сертифицирован-
ной робастности против состязательных возмущений по
норме ℓ2, основываясь исключительно на предобученных
моделях «из коробки». Для этого комбинируются предо-
бученная диффузионная модель-денойзер и стандартный
высокоточный классификатор.
При заданном денойзере выского качетсва (то есть

Dθ(x + ϵ) ≈ x с высокой вероятностью для ϵ ∼
N (0, σ2I)), ожидается, что точность базового классифи-
катора f на зашумленных изображениях будет близка к
точности этого же классификатора на чистых изображе-
ниях.
1) Шумоподавляющие диффузионные вероятностные

модели: Диффузионные модели представляют собой
класс генеративных моделей, которые обучаются инвер-
тировать время с помощью диффузионного процесса.
Прямой диффузионный процесс определяется как:

xt ∼
√

1− βt · xt−1 + βt · ωt, ωt ∼ N (0, I), (69)

где x0 берется из распределения данных, βt – фикси-
рованные (или обучаемые) параметры дисперсии. Обрат-
ный диффузионный процесс преобразует изображение из
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целевого распределения данных в случайный шум с тече-
нием времени, затем синтезирует изображения целевого
домена из полученного случайного шума.
В работе используется свойство обучения диффузион-

ных моделей. Пусть дано чистое обучающее изображе-
ние x ∈ [−1,−1]w·h·c, диффузионная модель выбирает
момент времени t ∈ N+, а затем генерирует зашумленное
изображение xt следующим образом:

xt =
√
αt · x+

√
1− αt · N (0, I), (70)

где αt – константа, определеяемая моментом времени
t, которая задает уровень шума, добавляемого в изобра-
жение.
Затем диффузионная модель обучается минимизации

расхождения между x и Dθ(xt), чтобы предсказать как
должно выглядеть исходное (незашумленное) изображе-
ние после применения шума в момент времени t.

Алгоритм 7 Зашумление, денойзинг, классификация
1: function NoiseAndClassify(x, σ):
2: t⋆, αt⋆ ← GetTimestep(σ)
3: xt⋆ ←

√
αt⋆(x+N (0, σ2I))

4: x̂← denoise(xt⋆ ; t⋆)
5: y ← f(x̂)
6: return y
7: function GetTimestep(σ):
8: t⋆ ← find t s.t. 1−αt

αt
= σ2

9: return t⋆, αt⋆

2) Денойзированное сглаживание с помощью диффу-
зионной модели: Случайное сглаживание требует приме-
ра с наложенным гауссовским шумом xrs ∼ N (x, σ2I),
в то время как в диффузионной модели зашумлённое
изображение имеет распределение xt ∼ N (

√
αtx, (1 −

αt)I). Нормируя xrs на
√
αt и приравнивая дисперсии,

получаем соотношение:

σ2 =
1− αt
αt

(71)

Чтобы применить диффузионную модель в случайном
сглаживании при заданном уровне шума σ, необходимо
найти момент времени t∗ такой, что σ2 = 1−αt∗

αt∗
. Далее

вычисляем:

xt∗ =
√
αt∗(x+ δ), δ ∼ N (0, σ2I) (72)

и применяем диффузионный денойзер к xt∗ , чтобы
получить оценку:

x̂ = Dθ(xt∗) (73)

Затем выполняем классификацию с помощью класси-
фикатора «из коробки»:

y = f(x̂) (74)

Для получения сертифицированной робастности про-
цесс денойзинга повторяется многократно, и вычисляет-
ся радиус сертификации согласно стандартной процеду-
ре случайного сглаживания.
Описанный алгоритм представлен в 7.

A. DensePure: понимание диффузионных моделей через
призму состязательной робастности
Фреймворк DensePure [21] представляет собой ком-

позицию двух компонентов: предобученной диффузион-
ной модели с обратным диффузионным процессом rev
и базового классификатора. Данный подход развивает
идеи, представленные в разделе VIII где рассматривалась
интеграция диффузионных денойзеров с классификато-
рами для достижения робастности без дополнительного
обучения.
1) Алгоритм DensePure:
1) Обратная диффузия: Входное изображение x по-

даётся на вход обратному диффузионному процес-
су rev, в результате чего получается rev(x).

2) Многократная генерация: Процесс обратной диф-
фузии повторяется K раз независимо, что приво-
дит к получению множества {rev(x)1, . . . , rev(x)K}
стохастически различных версий входного изобра-
жения.

3) Классификация: Полученные K примеров
подаются на вход базовому классификатору
f , что даёт множество предсказаний
{f(rev(x)1), . . . , f(rev(x)K)}.

4) Агрегация решений: Применяется процедура ма-
жоритарного голосования (majority vote, MV) для
получения итогового предсказания:

ŷ = MV ({f(rev(x)1), . . . , f(rev(x)K)})

= argmax
c

K∑
i=1

1{f(rev(x)i) = c}
(75)

Рис. 6. Схема работы фреймворка DensePure

Ключевое отличие DensePure от подходов раздела VIII
заключается в использовании полного обратного диффу-
зионного процесса вместо одношагового денойзинга, что
потенциально обеспечивает более качественное восста-
новление изображений за счёт увеличения вычислитель-
ных затрат.

B. Многомасштабное диффузионное сглаживание
В работе [22] выделяются критические случаи, ко-

гда сглаженный классификатор g демонстрирует суб-
оптимальную производительность: сверх-сглаживание и
сверх-уверенность. Для решения данных проблем пред-
лагается модифицированный процесс обучения денойзе-
ров, развивающий идеи разделов VII и VIII о компози-
ционных подходах к робастности.
1) Диагностика проблем сглаживания: Проблемные

случаи определяются на основе значения уверенности
сглаженного классификатора:

pgσ (x) := max
y
pgσ (x, y) = max

y
Pϵ∼N (0,σ2I)[f(x+ ϵ) = y]

(76)
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Обозначим p := pgσ (x) и введём пороговое значение
p0 для разделения проблемных случаев. По умолчанию
используется p0 = 0.5. Эмпирически показано, что зна-
чение p0 = 0.6 способно повысить точность классифика-
ции за счёт уменьшения сертифицированного радиуса.
2) Сверх-сглаживание (p ≤ p0): В случае p ≤ p0 пред-

сказания исходной модели f при заданном уровне шума
распределены относительно равномерно по всем клас-
сам, что приводит к малой вероятности доминирующего
класса. Данная ситуация возникает, когда уровень шума
достаточен для изменения семантического содержания
входа x. Следствием является малый радиус робастно-
сти, поскольку R монотонно убывает при уменьшении
p.
Для решения данной проблемы предлагается исполь-

зование каскада сглаженных классификаторов с различ-
ными уровнями шума, где для каждого входа выбирается
классификатор, максимизирующий радиус робастности.
Пусть заданы K различных параметров 0 < σ1 < . . . <
σK и соответствующие сглаженные модели gσ1

, . . . , gσK
.

Определим каскадную процедуру casc(x; {gσi
}Ki=1):

casc(x; {gσi
}Ki=1) :=


gσK

(x) если pgσK
(x) > p0,

casc(x; {gσi
}K−1
i=1 ) если pgσK

(x) ≤ p0 и K > 1,

ABSTAIN иначе
(77)

Теорема VIII.1 (Гарантии робастности для каскадного
сглаживания). Пусть gσ1 , . . . , gσK

: X → Y – сгла-
женные классификаторы с соответствующими пара-
метрами 0 < σ1 < . . . < σK . Предположим, что
casc(x; {gσi

}Ki=1) =: ŷ ∈ Y достигается при gσk
для

некоторого k. Рассмотрим любые p и pk′,c ∈ [0, 1],
которые удовлетворяют условиям:

p ≤ pgσk
(x, ŷ), (78)

pk′,c ≥ pgσ
k′
(x, c) для k′ > k и c ∈ Y (79)

Тогда выполняется casc(x+ ϵ; {gσi
}Ki=1) = ŷ для любого

‖ϵ‖ℓ2 < R, где:

R := min

σk · Φ−1(p), miny ̸=ŷ
k′>k

{
σk′ · Φ−1(1− pk′,y)

}
(80)

Данная теорема обеспечивает формальные гарантии
робастности для предсказаний, получаемых каскадной
процедурой.
3) Сверх-уверенность (p ≥ p0): Альтернативной про-

блемой при использовании денойзеров является их спо-
собность изменять семантическое содержание возмущён-
ного входа x + ϵ таким образом, что классификатор f
с высокой уверенностью относит его к неправильному
классу.
Для решения данной проблемы денойзеры дообуча-

ются с использованием модифицированной функции по-
терь. Обозначим D – денойзер, fstd – исходный клас-
сификатор, f := fstd ◦ D – композицию. Пусть Fstd –
выход последнего слоя fstd перед операцией argmax,
то есть fstd(x) = argmaxFstd(x). Определим pstd :=
maxc Fstd,c(D(x+ ϵ)).

Первая компонента функции потерь (Brier score):
LBrier(x, y) =

= Eϵ

[
1[ŷϵ = y или pstd(ϵ) ≤ p0] · ∥Fstd(D(x+ ϵ))− ey∥2ℓ2

]
,

(81)

где ŷϵ := f(x + ϵ), ey – единичный вектор с единицей
на позиции y.
Для второй компоненты функции потерь, поскольку

проверка условия pgσ (x) > p0 затруднена во время
обучения, рассматривается случай, когда для двух неза-
висимых случайных величин ϵ1, ϵ2 ∼ N (0, σ2I) соот-
ветствующие предсказания совпадают: ŷ1 = ŷ2, где
ŷi := f(x+ ϵi). Обозначим pi := Fstd(x+ ϵi). Тогда:

LAC(x, y) := 1[ŷ1 = ŷ2 и ŷ1 6= y]·(‖p1−sg(p1)‖2ℓ2+‖p2‖
2
ℓ2),

(82)
где sg(·) – операция остановки градиента, возвращающая
аргумент без распространения градиента.
Итоговая функция потерь имеет вид:

L(D) := LDenoiser + λ · (LBrier + α · LAC) (83)

C. Диффузионная модель как сертифицированно ро-
бастный классификатор
В данном подразделе рассматривается подход [23], де-

монстрирующий, что предобученные диффузионные мо-
дели обладают внутренней сертифицированной робаст-
ностью и могут использоваться как классификаторы без
дополнительного обучения. Данный подход развивает
идеи предыдущих разделов о композиционных методах
робастности и представляет альтернативную перспекти-
ву на использование диффузионных моделей.
1) Принципы работы диффузионных моделей: Пусть

x := x0 ∈ Rd имеет распределение данных q(x0).
Прямой процесс диффузии постепенно добавляет гаус-
совский шум к распределению данных, создавая непре-
рывную последовательность распределений {q(xt) :=
qt(xt)}Tt=1:

q(xt) =

∫
q(x0)q(xt|x0)dx0, (84)

где q(xt|x0) = N (xt;x0, σ
2
t I), то есть xt = x0 + σtϵ с

ϵ ∼ N (0, I).
Обычно σt монотонно возрастает с t, устанавливая

взаимно однозначные отображения t(σ) от σ к t и σ(t)
от t к σ. Параметр σT выбирается достаточно большим,
чтобы q(xT ) было близко к изотропному гауссовскому
распределению.
Пусть p := pθ – параметризованное обратное распре-

деление с априорным p(xT ) = N (xT ; 0, σ
2
T I). Процесс

диффузии для синтеза данных определяется как марков-
ская цепь с обученными гауссовскими переходами:

p(x0:T ) = p(xT )

T∏
t=1

p(xt−1|xt) (85)

Обратное гауссовское распределение p(xt−1|xt) пара-
метризуется нейронной сетью hθ(xt, t) как:

p(xt−1|xt) = N (xt−1;µθ(xt, t), σ̃
2
t I) (86)

µθ(xt, t) =
(σ2
t − σ2

t−1)hθ(xt, σt) + σ2
t−1xt

σ2
t

(87)
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Параметры θ обучаются путём оптимизации доказан-
ной нижней границы (ELBO) логарифма правдоподобия:

log p(x0) ≥ −
T∑
t=1

Eϵ
[
wt‖hθ(xt, σt)− x0‖2ℓ2

]
+ C1, (88)

где wt = σt+1−σt

σ3
t+1

– вес функции потерь на временном
шаге t, C1 – константа.
Аналогично, условная диффузионная модель

p(xt−1|xt, y) параметризуется как hθ(xt, σt, y) с
соответствующей нижней границей:

log p(x0|y) ≥ −
T∑
t=1

Eϵ
[
wt‖hθ(xt, σt, y)− x0‖2ℓ2

]
+ C2,

(89)
где C2 –константа.
2) Диффузионная модель как классификатор: Диф-

фузионный классификатор представляет собой генера-
тивный классификатор, использующий предобученную
диффузионную модель для робастной классификации.
Он вычисляет вероятность класса p(y|x0) ∝ p(x0|y)p(y)
через теорему Байеса и аппроксимирует условное прав-
доподобие через условный ELBO при предположении
равномерного распределения p(y):

DC(x0)y := p(y|x0) =
p(x0|y)p(y)∑
ŷ p(x0|ŷ)p(ŷ)

=
p(x0|y)∑
ŷ p(x0|ŷ)

=
exp(log p(x0|y))∑
ŷ exp(log p(x0|ŷ))

≈
exp
(
− 1

dT

∑T
t=1 Eϵ

[
wt∥hθ(xt, σt, y)− x0∥2ℓ2

])
∑

ŷ exp
(
− 1

dT

∑T
t=1 Eϵ

[
wt∥hθ(xt, σt, ŷ)− x0∥2ℓ2

])
(90)

Такой классификатор демонстрирует современный
уровень (state-of-the-art) робастности для различных мо-
делей угроз и обобщается на ранее неизвестные атаки
без необходимости состязательного дообучения.
3) Теоретические основы: Случайное сглаживание –

это независимый от модели метод для определения ниж-
ней границы устойчивости к состязательным примерам.
Данный подход, подробно рассмотренный ранее, мас-
штабируется до глубоких нейронных сетей и больших
наборов данных, достигая современного уровня серти-
фицированной робастности.
Метод создаёт сглаженный классификатор путём

усреднения выходов базового классификатора по гаус-
совскому шуму. Благодаря липшицевой непрерывности
такого классификатора он остаётся стабильным в преде-
лах определённого диапазона возмущений, обеспечивая
сертифицированную робастность.

Определение VIII.1 (Липшицева непрерывность).
Функция f : Rn → R называется липшицевой с
константой Липшица L, если существует L ≥ 0 такая,
что для любых x1, x2 ∈ Rn:

|f(x1)− f(x2)| ≤ L‖x1 − x2‖ℓ2 (91)

Данное свойство формализует идею ограниченного изме-
нения функции относительно изменения её аргумента.

Формально, имея классификатор f : Rd → Rm,
принимающий d-мерный вход x0 и предсказывающий

вероятности дляm классов, y-й выход сглаженного клас-
сификатора g определяется как:

g(x0)y = P
(
arg max

ŷ∈{1,...,K}
f(x0 + στ · ϵ)ŷ = y

)
(92)

где ϵ ∼ N (0, I) – гауссовский шум, στ — уровень шума.
Как показано в разделе V, Φ−1(g(x0)y) является 1

στ
-

липшицевой функцией, где Φ−1 – обратная функция
стандартного нормального распределения. На практике
оцениваются нижняя граница pA для g(x0)y и верхняя
граница pB для maxŷ ̸=y g(x0)ŷ с использованием дове-
рительных интервалов, после чего вычисляется нижняя
граница сертифицированного радиуса:

R =
στ
2

(
Φ−1(pA)− Φ−1(pB)

)
(93)

Обычно, существующие классификаторы обучены
классифицировать изображения из исходного распреде-
ления q(x0). Однако входное распределение в уравнении
(92) – это q(xτ ) =

∫
q(x0)q(xτ |x0)dx0. Из-за разницы

в распределениях, g(x0), классификатор обученный на
исходном распределении q(x0), показывает низкую точ-
ность на q(xτ ). Вследствие чего невозможно напрямую
использовать иффузионный классификатор со случай-
ным сглаживанием. Предлагается подход к созданию
диффузионных классификаторов, которые могут напря-
мую вычислять p(y|xτ ) с использованием готовой диф-
фузионной модели.
4) Предлагаемый метод:
a) Липшицева непрерывность диффузионного

классификатора: Ключевое наблюдение заключается
в том, что логиты диффузионного классификатора
− 1
dT

∑T
t=1 wtEϵ

[
‖hθ(xt, σt, y)− x0‖2ℓ2

]
из уравнения

(90) могут быть представлены как:

−
1

dT

T∑
t=1

wt

(
Eϵ

[
∥hθ(xt, σt, y)∥2ℓ2

]
+ ∥x0∥2ℓ2 − 2Eϵ

[
hθ(xt, σt, y)

⊤
x0

])
(94)

Поскольку Eϵ
[
‖hθ(xt, σt, y)‖2ℓ2

]
и Eϵ [hθ(xt, σt, y)]

сглажены гауссовским шумом, они удовлетворяют усло-
вию Липшица. Следовательно, логиты диффузионных
классификаторов также липшицевы, что означает робаст-
ность всего диффузионного классификатора.

Теорема VIII.2 (Верхняя граница константы Липши-
ца диффузионного классификатора). Для диффузионного
классификатора DC выполняется неравенство:

|DC(x0+ϵ)y−DC(x0)y| ≤
1

2
√
2

T∑
t=1

wt
σtT

(√
2

π
+

2√
d

)
‖ϵ‖ℓ2

(95)
Если оценить нижнюю границу pA для DC(x0)y и

верхнюю границу pB для maxŷ ̸=y DC(x0)ŷ с помощью кон-
центрационных неравенств, можно получить нижнюю
границу радиуса устойчивости:

R =

√
2T (pA − pB)

(2/
√
d+

√
2/π)

∑T
t=1 wt/σt

(96)

Однако, такая сертифицированная робастность имеет
ограничения, поскольку предполагает выполнение мак-
симального условия Липшица на всём пути возмущения.

15



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 14, no. 1, 2026

b) Диффузионный классификатор с точным за-
шумлённым апостериорным распределением: Случайное
сглаживание требует, чтобы базовый классификатор мог
классифицировать данные из зашумлённого распределе-
ния q(xτ ). Однако стандартный диффузионный класси-
фикатор ограничен классификацией данных только из
q(x0).
Для решения этой проблемы предлагается обобщение

диффузионного классификатора для работы с любыми
изображениями из q(xτ ) для произвольного τ . Основная
идея заключается в выводе ELBO для log p(xτ |y) и по-
следующем вычислении p(y|xτ ) через теорему Байеса.

Теорема VIII.3 (ELBO для зашумлённых данных). ELBO
для log p(xτ ) определяется как:

log p(xτ ) ≥ C3 −
T∑

t=τ+1

E [DKL(q(xt|xt+1, xτ )∥p(xt|xt+1))]

= C4 +
T∑

t=τ

w
(τ)
t E

[
∥E[q(xt|xt+1, xτ )]− E[p(xt|xt+1)]∥2ℓ2

]
(97)

где
• xt+1 ∼ q(xt+1|xτ ),
• w

(τ)
t =

σ2
t+1−σ

2
τ

2(σ2
t−σ2

τ )(σ
2
t+1−σ2

t )
,

• E[q(xt|xt+1, xτ )] =
(σ2

t+1−σ
2
t )xτ+(σ2

t−σ
2
τ )xt+1

σ2
t+1−σ2

τ
,

• E[p(xt|xt+1)] =
(σ2

t+1−σ
2
t )hθ(xt+1,σt+1)+σ

2
txt+1

σ2
t+1

Основываясь на теореме VIII.3, можно аппроксимиро-
вать log p(xτ |y) через его ELBO и вычислить p(y|xτ ) =
elog pθ(xτ |y)∑
ŷ e

log pθ(xτ |ŷ) для классификации.
5) Алгоритмическая реализация: Предлагается эффек-

тивный алгоритм «Sift-and-Refine» VIII-C5, который сна-
чала отсеивает маловероятные классы на основе грубых
оценок ELBO, а затем уточняет оценки для оставшихся
кандидатов.

Алгоритм 8 Sift-and-refine
Require: Функция вычисления ELBO для данного временного шага t и класса

y, обозначенная как eθ ; зашумленное входное изображение xτ ; временные
шаги просеивания {ti}Ts

i=0; шаги уточнения {ti}Tr
i=0; порог τ .

1: Инициализировать список кандидатов классов C = {0, 1, . . . , K}.
2: for i = 0 to Ts do
3: for все классы y в C do
4: Вычислить ELBO для класса y на временном шаге ti:

ey = eθ(xt, σti
, y).

5: end for
6: Найти класс m с минимальным ELBO:

m = arg min
y∈C

ey.

7: Обновить C, удалив классы с значением функции ошибки реконструкции
τ , превышающей таковую для m:

C = {y ∈ C : ey − em < τ}.

8: end for
9: Реинициализировать ey : ey =∞ ∀y /∈ C, 0 ∀y ∈ C.
10: for i = 0 to Tr do
11: for все классы y в C do
12: Вычислить и накопить ELBO для класса y на временном шаге ti:

ti : ey = ey + eθ(xt, ti, y).

13: end for
14: end for
15: return ỹ = arg miny ey .

IX. Вероятностная сертификация и трансформации
Данный раздел рассматривает методы вероятностной

сертификации робастности против семантических транс-

формаций, развивая концепции случайного сглаживания
для более сложных моделей угроз.

A. TSS: случайное сглаживание против состязательных
трансформаций для робастной сертификации
Фреймворк TSS (Transformation-Specific

Smoothing) [24] представляет методологию для
сертификации робастности систем машинного
обучения против общих состязательных трансформаций
посредством специализированных функций
сглаживания. Данный подход расширяет классическое
случайное сглаживание на более широкий класс
возмущений.
1) Математические основы и обозначения: Опреде-

лим основные математические объекты, используемые в
данном разделе:
• X ⊆ Rd – пространство входных данных размерно-
сти d

• Y = {1, . . . ,K} – множество меток классов, где
C ≥ 2 – количество классов

• Z ⊆ Rm – пространство параметров трансформа-
ции размерности m

• PX – вероятностная мера для случайной перемен-
ной X

• fX – плотность вероятности случайной переменной
X

• PX(S) – вероятность события S относительно меры
PX

• h : X → Y – базовый классификатор, определяемый
как h(x) = argmaxy∈Y p(y|x)

2) Модель угроз и цель сертификации:
a) Семантические трансформации: Семантические

трансформации моделируются как детерминированные
функции ϕ : X × Z → X , преобразующие изображение
x ∈ X с использованием параметра α ∈ Z . Например,
функция ϕR(x, α) моделирует поворот изображения x
на α градусов против часовой стрелки с использованием
билинейной интерполяции.
Семантические трансформации классифицируются на

основе их композиционных свойств. Ключевым крите-
рием является возможность представления композиции
трансформации ϕ с самой собой как единичной транс-
формации с модифицированным параметром, то есть
существование такого γ, что ϕ(ϕ(x, α), β) = ϕ(x, γ) для
всех α, β ∈ Z .

Определение IX.1 (Разрешимая трансформация). Транс-
формация ϕ : X × Z → X называется разрешимой, если
для любого α ∈ Z существует разрешающая функция
γα : Z → Z , которая является инъективной, непрерывно
дифференцируемой с неисчезающим якобианом, и для
которой выполняется:

ϕ(ϕ(x, α), β) = ϕ(x, γα(β)), ∀x ∈ X , β ∈ Z (98)

Трансформация ϕ называется аддитивной, если γα(β) =
α+ β.

Определение IX.2 (Дифференциально разрешимая
трансформация). Пусть ϕ : X × Zϕ → X –
трансформация с пространством параметров Zϕ, и
ψ : X × Zψ → X – разрешимая трансформация
с пространством параметров Zψ . Трансформация ϕ
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называется дифференциально разрешимой посредством
ψ, если для любого x ∈ X существует функция
δx : Zψ × Zϕ → Zψ такая, что для любых α ∈ Zψ и
β ∈ Zϕ:

ϕ(ψ(x, α), β) = ψ(ϕ(x, β), δx(α, β)) (99)

b) Модель угроз: Рассматривается состязательная
модель, в которой атакующий применяет семантическую
трансформацию ϕ с параметром α к входному изображе-
нию, преобразуя x 7→ ϕ(x, α). Атакующему разрешается
выбирать произвольный параметр α из предопределён-
ного пространства атаки S ⊆ Z .

c) Цель сертификации: Цель состоит в определении
множества параметров, для которых модель гарантиро-
ванно сохраняет робастность. Формально требуется най-
ти множество Scert ⊆ Z такое, что для классификатора h
и состязательной трансформации ϕ выполняется:

h(x) = h(ϕ(x, α)), ∀α ∈ Scert (100)

3) Методология TSS: Имея произвольный базовый
классификатор h, конструируется сглаженный классифи-
катор g посредством случайного преобразования входов
параметрами, выбираемыми из распределения сглажива-
ния.

Определение IX.3 (Сглаженный классификатор для
трансформаций). Пусть ϕ : X × Z → X – трансфор-
мация, ϵ ∼ Pϵ – случайная переменная со значениями в
Z , и h : X → Y – базовый классификатор. ϵ-сглаженный
классификатор определяется как g : X → Y:

g(x; ϵ) = argmax
y∈Y

q(y|x; ϵ) (101)

где
q(y|x; ϵ) = Eϵ[p(y|ϕ(x, ϵ))] (102)

4) Сертификация робастности: Цель заключается в
нахождении множества параметров возмущения Scert, за-
висящего от вероятностей pA, pB и параметра сглажи-
вания ϵ, такого что для всех возможных возмущений
α ∈ Scert гарантируется:

g(ϕ(x, α); ϵ) = g(x; ϵ) (103)

Данное условие означает, что предсказание сглажен-
ного классификатора не может быть изменено примене-
нием трансформации ϕ с параметрами α из робастного
множества Scert.
5) Алгоритмическая реализация: Для сертификации

робастности против трансформации ϕ, которая может
быть разрешена функцией ψ с параметрами из множества
S ⊆ Zϕ, применяется следующий алгоритм:

Теорема IX.1 (Гарантии робастности TSS). Пусть ϕ :
X × Zϕ → X – трансформация, разрешимая по-
средством ψ : X × Zψ → X . Пусть ϵ ∼ Pϵ –
случайная переменная со значениями в Zψ , и сглажен-
ный классификатор g : X → Y задан условием
q(y|x; ϵ) = Eϵ[p(y|ψ(x, ϵ))] с предсказанием g(x; ϵ) =
yA = argmaxy q(y|x; ϵ).
Пусть S ⊆ Zϕ и {αi}Ni=1 ⊆ S – множество

параметров трансформации такие, что для любого i
вероятности классов удовлетворяют:

q(yA|ϕ(x, αi); ϵ) ≥ p(i)A ≥ p
(i)
B ≥ max

y ̸=yA
q(y|ϕ(x, αi); ϵ)

(104)

Алгоритм 9 TSS: Сертификация против трансформаций
Require: Трансформация ϕ, разрешающая трансформа-

ция ψ, множество параметров S , классификатор h
1: Выбрать множество параметров {αi}Ni=1 ⊆ S
2: Вычислить трансформированные входы
{ϕ(x, αi)}Ni=1

3: Для каждого ϕ(x, αi) вычислить вероятности классов
с использованием ψ-сглаженного классификатора

4: if каждый параметр α ∈ S достаточно близок к
некоторому αi (δx(α, αi) ∈ ∆∗) then

5: return Классификатор робастен относительно S
6: else
7: return Робастность не гарантирована
8: end if

Тогда существует множество ∆∗ ⊆ Zψ такое, что
если для любого α ∈ S существует αi с δx(α, αi) ∈ ∆∗,
то гарантируется:

q(yA|ϕ(x, α); ϵ) > max
y ̸=yA

q(y|ϕ(x, α); ϵ) (105)

B. Сертифицированная защита с помощью случайного
сглаживания от трансформации изображений
В работе [25] рассматривается методы сертификации

геометрических трансформаций.
Обобщим теорему о гарантиях робастности для пара-

метризованных трансформаций. Рассмотрим составные
трансформации ψβ : Rm → Rm, удовлетворяющие
ψβ ◦ ψγ = ψβ+γ для любых β, γ ∈ Rd. Теперь можем
определить сглаженный классификатор g : Rm → Y для
трансформации ψβ

g(x) = argmax
c

Pβ∼N (0,σ21)(f ◦ ψβ(x) = c) (106)

Теорема IX.2. (Гарантии робастности). Пусть x ∈
Rm, f : Rm → Y - классификатор и ψβ : Rm → Rm
- составная трансформация. Если

Pβ(f◦ψβ(x) = cA) ≥ pA ≥ pB ≥ max
cB ̸=cA

Pβ(f◦ψβ(x) = cB)

(107)
тогда g ◦ ψγ(x) = cA∀γ : ||γ||2 ≤ σ

2 (Φ
−1(pA) −

Φ−1(pB)) =: rγ

C. Сертифицированная состязательная робастность с
дополнительным шумом
В работе [26] авторы предлагают фреймворк, который

позволяет вычислить верхнюю грань возмущений, при
которых классификатор будет давать корректные пред-
сказания.
Цель – показать, что если алгоритм классифицировал x

в класс c, то для любых примеров ‖x−x′‖ℓ2 ≤ L, x′ также
будет классифицирован в класс c. Оценка выводится из
следующих лемм и теорем:

Определение IX.4. (Дивергенция Реньи) Для двух рас-
пределений вероятностей P и Q над R, дивергенция
Реньи порядка α > 1 определяется следующим образом:

Dα(P ||Q) =
1

α− 1
logEx∼Q(

P

Q
)α (108)

Лемма IX.1. Пусть P = (p1, . . . , pk) и Q = (q1, . . . , qk)
- два мультиномиальных распределения над одним и
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тем же множеством индексов {1, . . . , k}. Если индек-
сы наибольших вероятностей P и Q различны, т.е.
argmaxi pi 6= argmaxj qj , тогда

Dα(Q||P ) ≥ −log(1−p(1)−p(2)+2(
1

2
(p1−α(1) +p1−α(2) ))

1
1−α )

(109)
где p(1), p(2) – наибольшая и вторая по величине вероят-
ности среди всех pi
Для упрощения обозначим Mp(x1, . . . , xn) =

( 1n
∑n
i=1 x

p
i )

1/p как среднее степенное. Тогда, правая
часть леммы превратится в −log(1 − 2M1(p(1), p(2)) +
2M1−α(p(1), p(2)))

Теорема IX.3. Пусть x ∈ X и возможный состязатель-
ный пример x′ ∈ X , такой что ||x − x′||2 ≤ L. Пусть
дан классификатор f : X → Y и f(x + N(0, σ2I)) ∼
(p1, . . . , pk) и f(x′ + N(0, σ2I)) ∼ (p′1, . . . , p

′
k). Если

следующее условие выполнено, при условии, что p(1), p(2)
- наибольшая и вторая по величине вероятности среди
всех {pi}:

sup
α>1
−2σ2

α
log(1−2M1(p(1), p(2))+2M1−α(p(1), p(2))) ≥ L2

(110)
то argmaxi pi = argmaxjp

′
j

Алгоритм 10 Сертифицированно робастный классифи-
катор
Require: Входное изображение x; Стандартное отклонение σ > 0; Классифика-

тор f над {1, . . . , k}; Количество итераций n (n = 1 оптимально только
дл робастного классфикатора, ищем c).

1: Пусть i = 1.
2: for i ∈ [n] do
3: Добавить шум ϵ ∼ N(0, σ2) каждому пикселю x и применить класси-

фикатор f на нем. Выход ci = f(x+ ϵ).
4: end for
5: Оценить распределение выхода как pj =

#{ci=j:i=1,...,n}
n .

6: Вычислить верхнюю грань:

L = sup
α>1

(
−

2σ2

α
log

(
1− p(1) − p(2) + 2

(
1

2

(
p
1−α
(1) + p

1−α
(2)

)) 1
1−α

))1/2

где p(1) и p(2) первое и второе наибольшие значения в p1, . . . , pk .
7: Вернуть результат классификации c = argmaxi pi и допустимый размер

атаки L.

X. Вероятностная сертификация и задача сегментации
Данный раздел рассматривает развитие концепции

случайного сглаживания в задаче семантической сегмен-
тации. Семантическая сегментация представляет особый
интерес для критически важных приложений, таких как
медицинская диагностика и автономное вождение, где
робастность является первостепенным требованием.

A. Масштабируемая сертифицированная сегментация с
помощью случайного слаживания
Работа [27] предлагает метод, сертифицирующий

робастность моделей, решающих задачу семантической
сегментации. Модели компьютерного зрения демонстри-
руют уязвимость к состязательным атакам, что критично
для приложений сегментации в областях с высокими
требованиями к безопасности. Задача сертификации в се-
мантической сегментации усложняется необходимостью
обеспечения гарантий для каждого пикселя изображения,
что приводит к экспоненциальному росту вычислитель-
ной сложности. В работе авторы сосредоточились на

сертификации по l2 норме, но также отмечается, что
предложенный метод можно расширить и на другие
нормы lp.
1) Случайное сглаживание в рамках задачи сегмен-

тации: Пусть дан вход x = {xi}Ni=1, состоящий из N
компонент xi ∈ X (пикселей или точек), и множество
классов Y . Семантическую сегментацию можно рассмат-
ривать как функцию f : XN → YN такую, что для
каждой компоненты xi определяется fi(x) = yi ∈ Y , где
fi обозначает i-ю компоненту выхода f , полученную из
x.
Предполагается, что X := Rm. Без ограничения общ-

ности используется m = 3, что соответствует цветовой
схеме RGB для изображений и трёхмерным облакам
точек.

a) Наивные подходы и их ограничения: Совместная
классификация. Задача сегментации f : XN → Y N

переформулируется через декартово произведение V :=
XN
i=1Y и введение новой функции f ′ : XN → V , которая

выполняет классификацию.
В таком случае классификатору f ′ может быть приме-

нена процедура CERTIFY из алгоритма 1. Однако изме-
нение в результате классификации одного компонента xi
изменит класс в V , что усложняет поиск мажоритарного
класса ĉA с высоким значением pA.
Независимая классификация. Альтернативный под-

ход состоит в классификации каждой компоненты неза-
висимо. Обозначив i-ю компоненту f(x) как fi(x), при-
меняется процедура CERTIFY из алгоритма 1 N раз
для оценки f̂i(x) и определения классов ĉA,1, . . . , ĉA,N
и радиусов R1, . . . , RN . Общий радиус определяется как
R = miniRi.
Для снижения вычислительных затрат возможно пе-

реиспользование входных выборок для всех компонент
выходного вектора, выполняя выборку f(x) вместо ин-
дивидуальных компонент fi(x).
Проблема множественного тестирования. Каждый

вызов CERTIFY выполняется с вероятностью корректно-
сти 1−α. Общая вероятность ограничена неравенством:

P

(∨
i

i-й тест некорректен

)

≤ min

(
N∑
i=1

P(i-й тест некорректен), 1

)
= min(Nα, 1)

(111)

Для больших N это становится критической пробле-
мой, требующей компенсации через выполнение вызовов
CERTIFY с α′ = α

N , что приводит к экспоненциальному
росту вычислительной сложности.

b) Ключевые проблемы:
• «Плохие компоненты»: Оба алгоритма могут да-
вать неудовлетворительные результаты или опреде-
лять малый радиус сертификации из-за единствен-
ной компоненты xi, на которой исходный класси-
фикатор строит нестабильный прогноз

• Компромисс множественного тестирования: Лю-
бой алгоритм, сводящий сертификацию сегментации
к множеству стохастических тестов, страдает от
проблемы множественного тестирования, приводя-
щей к выбору между масштабируемостью и стати-
стической достоверностью
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2) Масштабируемая сертификация сегментации:
Для решения выявленных проблем предлагается специ-
ализированный алгоритм с двумя ключевыми инноваци-
ями.

a) Решение проблемы «плохих компонент»: Для
уменьшения влияния нестабильных компонент вводится
порог τ ∈ [ 12 , 1] и модель f̂

τ : XN → ŶN с расширенным
множеством классов Ŷ = Y ∪ {∅}, которая возвращает
символ воздержания ∅, если вероятность наиболее веро-
ятного класса для компоненты xi ниже порога τ :

f̂τi (x) =

{
cA,i если Pϵ∼N (0,σ2I)[fi(x+ ϵ) = cA,i] > τ

∅ иначе
(112)

где cA,i = argmaxc∈Y Pϵ∼N (0,σ2I)[fi(x+ ϵ) = c].
Данная модель воздерживается от прогноза для ком-

понент, в которых она не уверена, сохраняя при этом
теоретические гарантии.

Теорема X.1 (Гарантии робастности с воздержанием).
Пусть Ix = {i | f̂τi (x) 6= ∅, i ∈ {1, . . . , N}} обозначает
множество индексов, для которых модель построила
прогноз. Тогда

f̂τi (x+ δ) = f̂τi (x), ∀i ∈ Ix (113)

для любого δ ∈ RN×m при ‖δ‖ℓ2 ≤ R := σΦ−1(τ).

Как и в оригинальном случае авторы не могут напря-
мую использовать f̂τ , а только ее аппроксимацию. Тогда
самое простое, это вызывать CERTIFY для каждого ком-
понента и заменить проверку pA > 1

2 и pA > τ .
Таким образом проблема с «плохими компонентами»

решена, остается проблема связанная с множествен-
ным тестированием. Для этого предлашается алгоритм
SEGCERTIFY 11.

Алгоритм 11 Предсказание и Сертификация
1: function SegCertify(g, σ, x, n, n0, δ, α)
2: cnts0

1, . . . , cnts0
N ← Sample(g, x, n0, σ)

3: cnts1, . . . , cntsN ← Sample(g, x, n, σ)
4: for i← {1, . . . , N}:
5: ĉi ← top index in cnts0

i
6: ni ← cntsi[ĉi]
7: pvali ←BinPValue(ni, n, ≤, δ)
8: r1, . . . , rN ← FwerControl(α, pval1, . . . , pvalN )
9: for i← {1, . . . , N}:
10: if ¬ri: ĉi ← ABSTAIN
11: R← σΦ−1(δ)
12: return ĉ1, . . . , ĉN , R

В алгоритме 11 функция Sample выполняет оценку
выборок f(x+ϵ), где cntsi обозначает вектор частот клас-
сов для i-й компоненты. Как и в алгоритме CERTIFY,
используются две выборки cnts и cnts0 для избежания
смещения в выборе модели.
Алгоритм использует n0 выборок для определения

мажоритарного класса cA,i для i-й компоненты, затем
определяет количество его появлений ni при проведении
n испытаний. Используя это количество, выполняется
односторонний биномиальный тест для получения p-
значения.
Функция FwerControl определяет, какие тесты следует

отклонить для достижения требуемого уровня достовер-
ности 1−α. Если i-й тест отклоняется (ri = false), алго-
ритм воздерживается от прогноза для соответствующей
компоненты.

B. На пути к улучшению сертифицированной сегмента-
ции с помощью диффузионных моделей
Работа [28] предлагает подход к повышению качества

сертификации для задач сегментации путём интеграции
диффузионных моделей в процесс случайного сглажива-
ния. Алгоритм представляет собой модификацию базо-
вого подхода SegCertify из раздела X-A, дополненную
этапом денойзинга:

Алгоритм 12 Sample функция
1: function Sample(g, x, n, σ)
2: cnts← []
3: for 0 to n− 1 do
4: t⋆, βt⋆ ← computeTimestep(σ)
5: xt⋆ ←

√
βt⋆ (x+N (0, σ2I))

6: y ← g(denoise(xt⋆ ; t
⋆))

7: cntsy ← cntsy + 1
8: return cnts
9:
10: function computeTimestep(σ)
11: t⋆ ← find t s.t. 1−βt

βt
= σ2

12: return t⋆, βt⋆

1) Базовый метод сравнения: В качестве базового
метода используется алгоритм SegCertify из раздела X-A.

XI. Случайное сглаживание против некоторых видов
атак

Данный раздел исследует применение методов случай-
ного сглаживания для защиты против специализирован-
ных типов атак, выходящих за рамки классических ℓp
возмущений. Развивая теоретические основы II, здесь
рассматриваются адаптации сглаживания для противо-
действия бэкдор-атакам, ℓ0 атакам и другим специфиче-
ским моделям угроз.

A. RAB: доказуемая робастность против бэкдор-атак
Работа [29] представляет подход к обеспечению сер-

тифицированной робастности против бэкдор-атак по-
средством адаптации методов случайного сглаживания.
Данный метод решает критическую проблему защиты от
скрытых уязвимостей, внедряемых в процессе обучения
модели.
1) Формализация бэкдор-атак: Пусть Ωx ∈ Rd –

бэкдор-паттерн, а ∆(Ωx) := {δ1, . . . , δr} – множе-
ство бэкдор-возмущений. Предполагается, что базовый
классификатор обучен на наборе данных с бэкдором,
содержащем r примеров, заражённых бэкдор-паттернами
из ∆(Ωx).
Цель состоит в том, чтобы предсказание класси-

фикатора, обученного на заражённом наборе данных
DBD(∆(Ωx)), для входа x+Ωx совпадало с предсказани-
ем сглаженного классификатора, обученного на чистом
наборе данных.

Определение XI.1 (Сглаженный классификатор с защи-
той от бэкдоров). Пусть f(x,D) = argmaxy p(y|x,D) –
базовый классификатор. Тогда сглаженный классифика-
тор определяется как:

q(y|x,D) = PX,D[f(x+X,D +D) = y] (114)

где X ∼ PX и D ∼ PD – независимые случайные
переменные, выступающие в качестве сглаживающих
распределений, причёмD представляет собой множество
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Алгоритм 13 DNN-RAB для обучения сертифицирован-
но робастных DNN.
Require: Отравленное тренировочное множество D =
{(xi + δi, ỹi)

n
i=1}, уровень шума σ, номер модели N

1: for k = 1, . . . , N do
2: Сэмплировать ϵk,1, . . . , ϵk,n

iid∼ N (0, σ2Id).
3: Dk = {(xi + δi + ϵk,i, ỹi)

n
i=1}.

4: hk = train_model(Dk).
5: Сэмплировать uk из N (0, σ2Id) детерминирован-
но с random seed, основанным на hash(hk).

6: end forreturn Набор моделей
{(h1, u1), . . . , (hN , uN )}

Алгоритм 14 Сертифицированный инференс моделей,
обученных методом RAB.
Require: Тестировочный пример x, уровень шума σ,

модели {(hk, uk)}Nk=1, величина бэкдора ‖δ‖2, коли-
чество отравленных тренировочных примеров r

1: counts = {k : hk(x+ uk, D + ϵk) = y} for y =
1, . . . , C

2: yA, yB = топ 2 индекса из counts
3: nA, nB = counts[yA], counts[yB]
4: pA, pB = calculate_bound(nA, nB , N, α).
5: if pA > pB then
6: R = σ

2
√
r

(
Φ−1(pA)− Φ−1(pB)

)
7: if R ≥ ‖δ‖2 then return предсказание yA, робаст-
ный радиус R.

8: end if
9: end ifreturn ABSTAIN

независимых одинаково распределённых случайных ве-
личин.
Финальный сглаженный классификатор имеет вид:

g(x,D) = argmax
y
q(y|x,D) (115)

2) Теоретические гарантии:

Теорема XI.1 (Гарантии робастности против бэкдор
атак). Пусть q – сглаженный классификатор со сгла-
живающим распределением Z := (X,D). Пусть Ωx ∈
Rd и ∆ := (δ1, . . . , δn) с δi ∈ Rd. Пусть yA ∈ Y ,
pA, pB ∈ [0, 1], yA = g(x,D) и

q(yA|x,D) ≥ pA ≥ pB ≥ max
y ̸=yA

q(y|x,D) (116)

Если оптимальные ошибки второго рода для тести-
рования Z ∼ P0 против альтернативы Z+(Ωx,∆) ∼ P1

удовлетворяют:

β∗(1− pA;P0,P1) + β∗(pB ;P0,P1) > 1 (117)

то гарантируется, что yA = argmaxy q(y|x+Ωx,D+∆).
α – вероятность ошибки I рода, β – вероятность

ошибки II рода, β∗(α0;P0,P1) = infϕ:α(ϕ;P0)≤α0
β(ϕ;P1)

B. Доказуемая робастность против объединения ℓ0 со-
стязательных атак
Работа [30] описывает метод предоставления фор-

мальных, детерминированных гарантий для предсказа-
ний модели при ℓ0 атаках, учитывающий как атаки укло-
нения, так и отравление обучающих данных.

Для произвольного входа (x, y) задача атакующего
состоит в том, чтобы добиться y 6= f(x). Атакующий
может полностью контролировать некоторые признаки
(количество контролируемых признаков определяется ℓ0
нормой) как во время обучения, так и во время эксплу-
атации модели.

Определение XI.2 (Сертифицированная робастность
признаков). Пусть даны обучающий набор данных
(X, y), модель f ′, обученная на (X ′, y), и произвольный
элемент x′ ∈ X . Сертифицированная робастность при-
знаков r ∈ N для произвольного (x, y) определяется как:

|X ′ 	X ∪ x′ 	 x| ≤ r → y = f ′(x′) (118)

где операция 	 для матриц признаков возвращает индек-
сы различающихся столбцов, а для векторов – индексы
различающихся элементов.

1) Робастность признаков через ансамблевое голо-
сование: Для получения требуемых гарантий предла-
гается использовать ансамбль моделей, обученных на
непересекающихся подмножествах признаков. На основе
решений каждой модели с помощью функции решений
определяется итоговое предсказание. Пусть ансамбль со-
стоит из T подмоделей, каждая из которых использует
признаки S1, . . . , ST , где Si ⊂ {1, 2, . . . , d} – индексы
соответствующих признаков.
Для каждой подмодели t определяются отображения

ft, gt, где ft(x) = argmaxy∈Y gt(x, y) и gt представляет
логиты модели t.
Вводятся агрегирующие функции:

ċy(x) :=

T∑
t=1

1[ft(x) = y]

c̈y(x, y
′) :=

T∑
t=1

1[gt(x, y) > gt(x, y
′)]

(119)

где ċ показывает количество моделей, которые прого-
лосовали за этот класс, а c̈y количество моделей, которые
дают большую вероятность классу y относительного y′.
Определяются доминирующие классы:

ypl := argmax
y∈Y

ċy(x) (120)

yru := arg max
y∈Y\{ypl}

ċy(x) (121)

Функции разрыва, отображающие разницу уверенно-
сти ансамбля, определяются как:

Gapvote(y, y
′;x) := ċy(x)− ċy′(x)− 1[y′ < y] (122)

Gaplogit(y, y
′;x) := c̈y(x, y

′)− c̈y′(x, y)− 1[y′ < y] (123)

Теорема XI.2 (Гарантии робастности для простого голо-
сования). Пусть f – функция голосования для разделе-
ния признаков S1, S2, . . . , ST . Тогда для (x, y) сертифи-
цированная робастность признаков равна:

rpl :=

⌊
Gapvote(ypl, yru;x)

2

⌋
(124)

2) Двухэтапное голосование: Предлагается усовер-
шенствованный метод агрегации предсказаний через
двухэтапную функцию:
Этап 1: Определение ypl, yru как описано выше.
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Этап 2: Определение финального решения:

f(x) = yRO :=

{
ypl если Gaplogit(ypl, yru;x) ≥ 0

yru иначе
(125)

Чтобы изменить предсказание модели при такой функ-
ции решений, необходимо либо чтобы неправильная мет-
ка была выбрана на втором этапе, либо чтобы неправиль-
ные метки были выбраны на первом этапе.
Для каждого случая определяется свой радиус, а ито-

говый радиус –это минимум из двух.

r
Case1
RO := min

y∈Y\yRO
max

{⌊
Gapvote(ỹRO, y)

2

⌋
,

⌊
Gapvote(yRO, y)

2

⌋}
(126)

r
Case2
RO := min

y,y′∈Y\yRO
dp
[
Gapvote(yRO, y),Gapvote(yRO, y

′
)
]

(127)

где dp[∆,∆′] = 1+min{dp[∆−2,∆′−1], dp[∆−1,∆′−
2]} находится с помощью динамического программиро-
вания, учитывая что dp(∆,∆′) = 0, когда max{∆,∆′} ≤
1.

Теорема XI.3 (Гарантии робастности для двухэтапно-
го голосования). Пусть f – функция, определённая
уравнением 125. Тогда сертифицированная робастность
признаков равна:

rRO := min{rCase 1RO , rCase 2RO } (128)

где радиусы для отдельных случаев определяются через
динамическое программирование и анализ возможных
сценариев изменения голосов.

C. Сертифицированная робастность к состязательным
атакам с дифференциальной приватностью
В работе [31] предлагается использовать дифферен-

циальную приватность (differential privacy или DP) [32],
чтобы получить гарантии робастности для модели.
1) Основы дифференциальной приватности:

Определение XI.3 (Дифференциальная приватность).
Случайный алгоритм A, принимающий обучающие дан-
ные d и возвращающий значение из пространства O,
удовлетворяет (ϵ, δ)-дифференциальной приватности от-
носительно метрики ρ, если для любых d, d′ таких, что
ρ(d, d′) ≤ 1, и для любого подмножества S ⊆ O
выполнено:

P[A(d) ∈ S] ≤ eϵP[A(d′) ∈ S] + δ (129)

где ϵ > 0, δ ∈ [0, 1] – параметры, отражающие уровень
приватности.

Из XI.3 следует, что:

Лемма XI.1. Пусть A – это случайная функция, с огра-
ничением A(x) ∈ [0, b], b ∈ R+, удовлетворяющая (ϵ, δ)-
DP. Тогда математическое ожидание значения выхода
удовлетворяет следующему неравенству:

∀α ∈ Bp(1).E(A(x)) ≤ eϵE(A(x+ α)) + bδ, (130)

где Bp(b) шар с центром в нуле, радиуса b по норме
ℓp.

Теорема XI.4 (Робастность через дифференциальную
приватность). Пусть A – (ϵ, δ)-PixelDP алгоритм с ℓp

Рис. 7. Архитектура PixelDP

нормой и параметром L. Для любого x, если существует
k ∈ K такое, что:

E(Ak(x)) ≥ e2ϵmax
i ̸=k

E(Ai(x)) + (1 + eϵ)δ, (131)

Тогда мультиклассовая классификация на основе значе-
ний y(x) = (E(A1(x)), . . . ,E(AK(x))) робастна к ата-
кам с наложением α : ||α||p ≤ 1 для x.

2) Архитектурные решения: Для применения теории
дифференциальной приватности к произвольной моде-
ли добавляется слой наложения шума, что позволяет
получить требуемый уровень приватности. Выделяются
четыре стратегии размещения шумового слоя:
1) Непосредственно после входного слоя;
2) После первого скрытого слоя;
3) В промежуточных слоях модели;
4) После автоэнкодера, добавленного в начало моде-

ли.
Для выбранного разделения модели Q(x) = h(g(x))

результирующий алгоритм имеет вид:

AQ(x) = h(g(x) + noise(∆, L, ϵ, δ)), (132)

где чувствительность отображения g(x) определяется
как:

∆p,q = ∆g
p,q = max

x ̸=x′

‖g(x)− g(x′)‖ℓq
‖x− x′‖ℓp

(133)

Шум накладывается из распределения Лапласа или
Гаусса. При заданных значениях среднего, равному нулю
и σ =

√
2∆p,1L/ϵ для распределения Лапласа получаем

(ϵ, 0)-DP. При заданных значениях среднего, равному
нулю и σ =

√
ln
(
1.25
δ

)
∆p,2L/ϵ для распределения Гаусса

получаем (ϵ, δ) для ϵ ≤ 1.
3) Обучение: Во время обучения необходимо контро-

лировать чувствительность до слоя с шумом.
4) Получение предсказания и уровня робастности:

Оценим E(Ak(x)) с помощью метода доверительных ин-
тервалов, получая E(Ak(x)) ∈ [Êlb(Ak(x)), Êup(Ak(x))] с
вероятностью η. Также, с помощью метода Монте Карло
вычислим значение Ê(Ak(x)). Тогда верна теорема:

Теорема XI.5. Пусть A – (ϵ, δ)-PixelDP с p нормой и
параметром L. Для любого x, если существует k ∈ K,
такое что

Êlb(Ak(x)) ≥ e2ϵmax
i ̸=k

Êub(Ai(x)) + (1 + eϵ)δ, (134)

Тогда мультиклассовая классификация на основе значе-
ний y(x) = (Ê(A1(x)), . . . , Ê(AK(x))) робастна к ата-
кам с наложением α : ||α||p ≤ L для x.
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Рис. 8. Классификация методов сертификации робастности модели на основе типа решаемой задачи и типов атак. Здесь под сокращением RS
понимается термин случайное сглаживание (randomized smoothing).

XII. Тенденции развития метода случайного
сглаживания

Рассмотрев фундаментальные принципы и основные
алгоритмические реализации метода случайного сглажи-
вания, перейдём к анализу актуальных направлений его
дальнейшего развития, отражающих современные тен-
денции в области сертифицированной робастности.

A. Оптимизационные и теоретические улучшения

Ряд работ сосредоточен на улучшении теоретических
границ сертификации и эффективности алгоритмов. В
работе QCRS [33] предложена оптимизация, обеспечи-
вающая повышение радиуса сертификации без измене-
ния структуры классификатора. Метод [34] направлен
на уменьшение влияния размерности входного простран-
ства и повышение устойчивости оценок. Исследова-
ние [35] расширяет применение сглаживания на ядровые
методы и задачи обучения с регуляризацией. Работы [36]
и [37] развивают идею проекционного и вариационного
сглаживания, обеспечивая более гибкую оптимизацию

сертификационных радиусов и повышение стабильности
обучения.

B. Расширение класса распределений
Современные исследования активно выходят за преде-

лы изотропного гауссовского шума, рассматривая более
общие распределения и механизмы сглаживания. Мето-
ды [38], UCAN [39] демонстрируют возможность исполь-
зования смесей, асимметричных и медианных распреде-
лений для адаптации сглаживания под свойства данных.
Эти подходы позволяют лучше управлять компромиссом
между точностью и сертифицированной робастностью в
реальных задачах.

C. Статистические и оценочные подходы
Исследование [40] формулирует задачу случайного

сглаживания как задачу статистической оценки пара-
метров распределений вероятностей, что открывает воз-
можности для более строгого анализа доверительных
интервалов сертификации.
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D. Расширение на крупные и мультимодальные модели
Недавние работы [41], [42] демонстрируют масштаби-

рование метода на современные VLM модели и мульти-
модальные архитектуры, включая трансформеры с мил-
лиардами параметров. Такие исследования подтвержда-
ют применимость метода сертификации даже в высоко-
размерных и кроссмодальных пространствах признаков.

XIII. Сравнительный анализ
Исходя из рассмотренных в обзоре подходов авторы

предлагают выбирать метод для сертификации робаст-
ности модели на основе типа решаемой задачи (клас-
сификация, сегментаци, vision-language understanding
для VLM моделей) и предполагаемых типов атак –
состязательных возмущений по нормам ℓ1, ℓ2, ℓ∞, состя-
зательных трансформаций, бэкдор-атак, ℓ0 состязатель-
ных атак и jailbreak атак.
Выбор метода сертификации робастности определяет-

ся как типом решаемой задачи, так и предполагаемой
моделью угроз. Для задач классификации в условиях
плотных аддитивных возмущений наиболее естествен-
ным выбором являются методы гауссовского случайного
сглаживания, обеспечивающие сертифицированную ℓ2-
робастность и хорошо масштабируемые на данные вы-
сокой размерности.
В сценариях разреженных атак более адекватной моде-

лью угроз выступают ℓ1- и ℓ0-ограничения, для которых
методы случайного сглаживания с равномерным шумом
и его модификациями обеспечивают более интерпрети-
руемые и релевантные гарантии устойчивости, особенно
при учёте ограничений входных данных.
Для моделей угроз, выходящих за рамки аддитив-

ного шума, включая состязательные трансформации и
бэкдор-атаки, применяются специализированные методы
сертификации, ориентированные на соответствующую
природу атак. Аналогично, для задач семантической сег-
ментации и vision–language understanding требуется адап-
тация методов сертификации с учётом структурирован-
ного выхода модели и мультимодальной природы дан-
ных. В частности, для VLM-моделей методы случайного
сглаживания рассматриваются как средство повышения
устойчивости к jailbreak атакам, направленным на изме-
нение высокоуровневого поведения модели, а не только
её точечных предсказаний. Полная классификация пред-
ставлена на рис. 8.

XIV. Заключение
Данный обзор представляет комплексный анализ со-

временного состояния методов случайного сглаживания
для обеспечения сертифицированной робастности систем
машинного обучения. Проведённое исследование охва-
тывает широкий спектр подходов — от фундаменталь-
ных теоретических основ до специализированных адап-
таций для конкретных моделей угроз и задач.
Авторами были рассмотрены различные модификации

метода случайного сглаживания, показана его масшта-
бируемость, применение в различных задачах, основные
метрики, модели и наборы данных. Главным преиму-
ществом рассмотренных методов является то, что для
нейронной сети можно вычислить сертифицированнй ра-
диус, внутри которого предсказание не будет изменяться

в условиях атаки. Это, а так же теоретическая обоснован-
ность рассмотренного семейства методов делает их инте-
ресными для применения, когда требуется гарантировать
устойчивость модели к состязательному возмущению.
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Randomized Smoothing in Certified Robustness:
Theory and a Systematic Review

Karine Ayrapetyants, Eugene Ilyushin

Abstract—Nowadays, as artificial intelligence systems are
increasingly applied across various domains, the issue of their
security has become ever more relevant. Naturally, neural
network algorithms, which we currently associate with the
concept of “artificial intelligence,” are also susceptible to
both intentional and unintentional perturbations. Therefore,
providing guarantees for the robustness of their operation is
an important task. One of the methods that enables addressing
this problem is randomized smoothing. This method allows us
to obtain formal guarantees on the performance of a classifier
under a given data distribution. Randomized smoothing, as well
as its modifications, will be reviewed in this survey.

Keywords—randomized smoothing, neural network robust-
ness, certified accuracy, machine learning
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