
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 6

Functional requirements for a modern application

configuration framework
Victor S. Denisov

Abstract – this paper describes a set of requirements

for a modern application configuration framework for

Java-based applications, including requirements for

dependency injection support, type-safety and self-

documentation.

Keywords — application configuration management,

application settings management, framework, Java.

I. INTRODUCTION

As shown in [1], an area of Application Configuration

Management had been mostly neglected by Java

developers. While approaches, patterns and frameworks

for developing Java applications are evolving rapidly –

with language features and technologies like annotations,

dependency injection, ORM and lambda expressions

becoming commonplace (see [2] and [3] for a discussion

of adoption of annotations and dependency injection,

respectively), configuration libraries stagnated, stuck with

providing simplistic key-value mappings and no advanced

features expected of any modern Java framework.

This paper proposes a number of functional requirements

for an application configuration framework, both common

– like being platform-independent and employing a suite

of unit/integration tests – and specific to the subject area,

like support for complex data structures and type-safety.

II. COMMON REQUIREMENTS

Common requirements put forward specifications which

should be met by most, if not all, modern production-

ready Java applications and libraries. Of particular interest

for a potential application configuration framework are the

following requirements:

• platform independence;

• suite of unit and integration tests;

• support of dependency injection;

Let's examine each of the above requirements in detail.

A. Platform Independence.

Java applications can be executed by a Java Virtual

Machine running on a number of platforms with different

computing hardware architecture, different operating

systems and otherwise different operational environments

(i.e., different types of persistent storage and networking

stacks). It follows that configuration framework should

not, to the extent possible, rely on any one platform's

specific features, and should generally make as few

 Victor S. Denisov is with the Lomonosov Moscow State University

(e-mail: vdenisov@plukh.org).

assumptions about its runtime environment as possible.

This includes not expecting support for file-based

persistent store nor any other platform-specific persistent

store, like Windows registry.

B. Unit and integration tests.

As configuration framework is supposed to be employed

in a number of different operating environments,

including cloud and embedded systems, it is reasonable to

expect that it'll have many internal code paths which will

not be regularly exercised on any specific platform.

Additionally, configuration framework is usually close to

the core of the application's functionality – most

applications will fail with a fatal error if they won't be

able to obtain a set of valid initial configuration options.

In other words, services of a configuration framework are

critical for the containing application.

As it would be impractical to manually test all changes in

a framework in all supported operating environments -

and criticality of configuration framework necessitates a

rigorous testing regimen – a sophisticated suite of

automated unit and integration tests should be employed

to maintain an acceptable level of quality of the

framework's codebase as it evolves over time. L. Koskela

in [4] suggests that a typical level of code coverage

should be around 85%, so it seems reasonable to set it as

a lower acceptable level of code coverage for a

configuration framework.

C. Support of dependency injection

Dependency injection is defined as "a software design

pattern that implements inversion of control for resolving

dependencies" [5]. This form of IoC is extremely helpful

when developing loosely-coupled applications, avoiding

strong ties between separate application components

while delineating each components' services and

dependencies via formally defined APIs (usually in the

form of Java interfaces).

Configuration framework can benefit from supporting

both injection of its dependencies into the framework and

providing its services via dependency injection to other

application components.

Injecting different implementations of services consumed

by the framework allows it to easily adapt to different

environments (including, but not limited to, injecting

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 7

mock object implementations to test services which would

otherwise be impractical to test automatically
1
.)

Injecting the framework service object(s) themselves

allows the application to be quickly reconfigured, often

without changing the source code. It also allows to mock

framework's services when needed, or replace it with a

different implementation.

III. SPECIFIC REQUIREMENTS

A. Minimal number of dependencies

Configuration framework should, ideally, support projects

of all sizes – from just a couple hundreds of LoCs all the

way up to the millions. While larger projects can usually

afford to manage an arbitrary number of dependencies,

often via a dedicated project or dependency management

framework
2
, dependency management for small projects

often becomes a serious issue, especially when transitive

dependencies are involved
3
.

With that in mind, a potential configuration framework

should have a limited number of dependencies, with core

functionality, ideally, being available with no

dependencies at all. One possible approach would be to

split a framework into a core module and a number of

optional submodules, each of which can make its services

(like access to a persistent storage or a serialization

format) available to a core module at runtime. Each

submodule would bring its own set of dependencies (i.e., a

cloud storage module may depend on an appropriate cloud

SDK), but the core module would have no mandatory

dependencies at all.

B. Annotation-driven configuration

In Java programming language, annotations allow to add

metadata to standard syntactic constructs like classes,

methods, fields, etc. Practically, annotations allow one

part of the application (or one of its dependencies) to

retrieve additional information about syntactic elements of

another parts (such as reading annotations on a method of

a certain class, or treating classes annotated with a certain

annotation differently from other classes).

One important benefit of annotations (as compared to

external metadata sources such as XML files) is that

they're tightly tied to the code they annotate, and can be

moved/copied/modified alongside that code. Another

benefit is that they do not depend on the availability of

external metadata source – runtime annotations are

compiled into Java bytecode and are automatically

available (via reflection) to any class within the classpath.

1 This often includes mocking services which require

network access (which can be unavailable at the time

the tests are run, or which can incur some sort of

charge). Services which require a significant time to

run (such as backup/restore services) are good

candidates for mocking, too.

2 See [6] for an overview of common Java dependency

management tools.

3 See [7] for an overview of how complex dependency

management is even with a dedicated project

management framework like Maven.

Most recent frameworks, from unit testing [8] to object-

relational mapping [9] to serialization [10] include some

sort of annotations-based configuration. In context of

configuration management framework annotations can

supply the framework with information about annotated

elements (such as whether a certain configuration

property is read-only or read-write, specify mapping of

the property's value when persisting the property to a

persistent store, etc). Annotations also help with self-

documentation of configuration options (see below).

C. Self-documentation of configuration options

When new developers check out a set of configuration

options for an established project, they tend to have the

same set of questions:

• what options are available to me?

• what options are read-only and what are read-

write?

• what options are persisted in a backing store and

what are only valid during application's runtime?

• what type does the property have and what's its

acceptable values range?

• what backing store(s) are used, and is the store

read-only, or read-write?

Having answers to those questions in the options code

itself (in other words, having code to self-document

itself) would be extremely helpful – both to break in a

new developer and to quickly look up information for an

experienced one. Also, self-documenting code usually

leads to fewer errors and faster/more efficient

development.

D. Support of cloud services

In recent years, cloud computing became commonplace,

with 93% of companies adopting some form of cloud

services [11]. However, efficient use of modern cloud

technologies often requires significant changes on the

part of the application, including the way it is configured.

Some of the limitations imposed by cloud services can

include:

• absence of a file-based local storage;

• limited control over computing instance

deployment and initialization, custom

provisioning technologies;

• extreme variation in workloads, quick

turnaround of (virtual) computing instances;

• prevalence of non-traditional storage

technologies
4
 ([12], [13], [14])

In some cases ([15], [16]), application virtualization may

go as far as to deal away with a notion of "computing

instance" itself, which makes application configuration

management an even more complex issue.

4 Traditional storage technologies include stuff like

file-based storage and relational databases, while

non-traditional can include technologies like NoSQL

databases, document stores, REST-based APIs, etc.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 8

A modern application configuration framework must

support at least the most common cloud-based persistence

services as configuration sources, as well as being able to

operate in instance-less deployment scenarios.

E. Type-safety

A common question with simple, file-based configuration

frameworks is "what Java type should I use for this

option" - for example, is the option's value integer or

decimal? or perhaps it can be a character string as well?

Or perhaps it's a more complex object serialized as a

character string? Unfortunately, existing frameworks

rarely provide a developer with intuitive answer, which

leads to all sorts of non-obvious runtime issues.

A modern configuration framework must satisfy a

requirement of type-safety: it should only be possible to

set an option to values of a predetermined type (or a set of

types), and it must always return an instance of a

predetermined type when being read.

One approach to achieve type-safety is to define

application configuration information via a Java interface

with methods to get (and set, if required/allowed) each

individual option. If configuration information is only

accessed via this interface, type safety will be guaranteed

by the Java compiler.

F. Support for different configuration

sources/persistent backing stores

As discussed above, modern Java applications run in a

number of environments, from servers and desktops to

cloud platforms to mobile devices. Consequently,

configuration framework should be able to handle

different types of configuration sources:

• traditional configuration files in various formats;

• Java system properties;

• environment variables;

• SQL and NoSQL databases;

• cloud-based document stores;

• web services and other web-based sources;

However, simply being able to interact with different

backing stores is not enough – configuration framework

should support environment-based preferences for a

configuration source, for example:

• on developer's workstation, use a file-based store;

• in an on-premises deployment, use an SQL

database;

• in a cloud deployment, use cloud-based

document store.

Finally, framework should support chaining of

configuration sources, so that configuration information

can be retrieved from multiple sources and then combined

together (also, see III.K), for example, in an AWS EC2

environment an application can use the following chain:

• read defaults from a classpath resource;

• read common configuration information from an

S3-based file;

• read instance-specific configuration from an

instance metadata via an HTTP call.

Such chaining should be, to the extent possible,

transparent to the application – it should only be

concerned with defining the chain and providing

necessary credentials, if needed by the underlying

service.

G. Extensibility

Despite the requirements of sections II.A and III.F,

configuration framework is still inherently environment-

dependent (as it should receive and, perhaps, store

configuration information from/to somewhere outside the

application's scope), it is technically impossible to make

it absolutely self-contained. Additionally, the format in

which configuration information is delivered can be quite

different, and often outside of developer's control.

This calls for a requirement of at least two possible

extension endpoints: access to the backing persistent store

(or other configuration source) and format of the

configuration information itself. Framework should

define clear extension mechanisms which would allow

developers to plug in their custom implementations of

persistent store accessors and serialization/deserialization

providers.

Additionally, application developers would benefit from

the ability to add support for custom data types to be used

as part of configuration information – more on this below.

H. Support for complex data structures

Most existing configuration frameworks only support

scalar types, such as integers and strings, and simple

vector types, like lists and/or arrays, as their value

options. However, complex applications would benefit

from arbitrarily complex structures (including direct

encapsulation of Java objects).

While it can probably be impractical for a framework to

implement full support for any conceivable Java object to

be read/stored in any supported persistent store in a

platform-independent way, it should, at the very least,

support the more common (and well-defined) structures,

such as Java Beans and collections from Java Collections

Framework and other popular collection classes, such as

those provided by Google Guava [17].

For other use cases, the framework should define an

extension mechanism which would allow developers to

add support for custom data types. Most likely, this would

be implemented as part of serialization/deserialization

API, since platform- and store-independent serialization

is probably the most significant obstacle for such support.

I. Support for value validation and conversion

Humans invariably make mistakes, so sooner or later,

configuration framework will encounter errors in

provided configuration information, either in the structure

of the information itself (i.e., a malformed XML

document) or in one of the properties' values. Reaction to

such errors should be robust and predictable: depending

on the severity of the problem and specific application's

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 9

requirements, framework should either immediately and

unambiguously fail (likely by throwing a checked

exception), or (for a recoverable error) substitute a set of

reasonable default values for affected properties while

alerting the application (via a return value, an application

event and/or an error message to a log file or console).

In addition to value validation framework should contain

tools to influence value conversion: while for some value

types (mostly number-based) conversion rules are

reasonably well-established, for many others (like

dates/times, boolean values, and enumerated types)

conversion is significantly less straightforward.

Framework should employ configurable converters for

data types where formal format specification is common

(i.e., date/time types), as well as support custom value

converters for arbitrary data.

J. Runtime configuration changes/change listeners

Configuration information is of interest to many modules

and submodules within the application. When this

information changes (either externally, like modification

of the configuration file on a filesystem – or internally by

an application component, like a configuration dialog),

framework should propagate notifications about the

change to all interested parties. Notifications can be issued

via a traditional provider/listener pattern, or a more

efficient event bus pattern.

K. Support for structured configuration information

For larger applications, the number of distinct

configuration options can be quite high, certainly in the

hundreds, if not thousands. However, any given

application submodule only deals with a handful of

properties – so if the framework can provide only a

specific subset of configuration information – that of

interest to the submodule – it would make the life of a

module developer significantly easier. If allowing to pick

specific options is impractical (it probably will be without

a dedicated dependency injection framework), the

framework should, at the very least, support a hierarchical

grouping of configuration options, with modules only

retrieving specific groups at the specific hierarchy levels.

Additionally, for those persistent backing stores that

support structured information (and that would be, in one

form or another, most of them – from configuration files

to databases to REST services), framework should support

both reading and writing configuration information in a

reasonably structured way (i.e., using prefixes and/or

sections for property files or a proper nesting for XML

documents).

IV. CONCLUSION

This paper presents a set of common and subject area-

specific functional requirements for a modern application

configuration framework. This includes the following

common requirements:

• platform independence;

• extensive coverage by unit and integration tests;

• support for dependency injection frameworks;

and the following specific requirements:

• minimal number of runtime and compile-time

dependencies, at least for simpler configurations;

• annotation-driven configuration specification;

• self-documentation of configuration options;

• support of cloud services;

• complete type-safety;

• support for different configuration sources;

• extensibility via plugins and alternative

implemenations;

• support for complex object data structures;

• support for value validation and conversion;

• runtime configuration change event propagation;

• support for structured configuration information.

This list is, of course, not in any way exhaustive.

However, implementing a framework that matches most

of the above requirements would greatly benefit the Java

application ecosystem.

V. FUTURE WORK

The requirements above were used as guidelines when

developing a new open-source configuration library

"options-util"
5
. While there is still a lot of work ahead for

this library, development-wise, it already provides a solid

set of features for accessing configuration information

from a variety of configuration sources.

REFERENCES

[1] Denisov, V. (2013). Overview of Java

application configuration frameworks. International

Journal of Open Information Technologies, 1(6), 5-9.

Available: http://injoit.org/index.php/j1/article/view/33

[2] R. Dyer, H. Rajan, H. A. Nguyen, and T. N.

Nguyen. "Mining billions of AST nodes to study actual

and potential usage of Java language features" in

Proceedings of the 36th International Conference on

Software Engineering, pp. 779-790. ACM New York,

2014

[3] H. Y. Yang, E. Tempero, H. Melton. An

Empirical Study into Use of Dependency Injection in

Java in "19th Australian Conference on Software

Engineering, 2008 (ASWEC 2008)", pp. 239 – 247.

Perth, WA, 2008

[4] L. Koskela. Test Driven. Practical TDD and

Acceptance TDD for Java Developers. Manning,

Greenwich, CT, 2008

[5] Dependency injection [Online]. Available:

https://en.wikipedia.org/wiki/Dependency_injection

[6] M. Rasmussen. (2013, Nov. 21). Java Build

Tools: How Dependency Management Works with

Maven, Gradle and Ant + Ivy [Online]. Available:

http://zeroturnaround.com/rebellabs/java-build-tools-

how-dependency-management-works-with-maven-

gradle-and-ant-ivy/

5 https://github.com/options-util/options-util

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 10, 2015

 10

[7] Introduction to the Dependency Mechanism

[Online]. Available:

https://maven.apache.org/guides/introduction/introduction

-to-dependency-mechanism.html

[8] TestNG Documentation – Annotations [Online].

Available: http://testng.org/doc/documentation-

main.html#annotations

[9] MyBatis Java API [Online]. Available:

https://mybatis.github.io/mybatis-3/java-api.html

[10] Jackson Core Annotations [Online]. Available:

https://github.com/FasterXML/jackson-annotations/wiki

[11] RightScale (2015). Cloud Computing Trends:

2015 State of the Cloud Survey [Online].Available:

http://www.rightscale.com/blog/cloud-industry-

insights/cloud-computing-trends-2015-state-cloud-survey

[12] Amazon DynamoDB [Online]. Available:

https://aws.amazon.com/dynamodb/

[13] Google App Engine Datastore [Online]. Availble:

https://cloud.google.com/appengine/features/#datastore

[14] DocumentDB [Online]. Available:

https://azure.microsoft.com/en-us/services/documentdb/

[15] AWS Lambda [Online]. Available:

https://aws.amazon.com/lambda/

[16] Google App Engine: Platform as a Service

[Online]. Available: https://cloud.google.com/appengine/

[17] B. Bejeck. Getting Started with Google Guava.

Packt Publishing, Birmingham, UK, 2013.

