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Abstract— C/C++ programs often suffer from memory 

corruption bugs. Over the years, numerous tools were 

developed to help with their detection. A recent addition is 

AddressSanitizer (ASan) - an extraordinarily fast runtime 

checker with a good coverage of various types of bugs. 

This paper describes our experience in integration of ASan 

technology into large-scale software products: Tizen 

distribution and Linux kernel. The tool has already found 

around a hundred of serious memory bugs in various Tizen 

applications and in mainline Linux kernel. 

 
Keywords—runtime memory checker, AddressSanitizer, 

KernelAddressSanitizer. 

 

I. INTRODUCTION 

Memory corruption is an error which occurs when 

application unintentionally reads or writes data past the 

bounds of proper memory region. Typical examples are 

buffer overflows and use-after-free errors. Examples of such 

errors are given in Fig. 1. 
 

int x[10]; 

for (int i = 0; i <= 10; ++i) 

  x[i] = 0;  // Buffer overflow @ i == 10 

 

char *p = malloc (1); 

free (p); 

p[0] = 0;  // Use-after-free 

Fig. 1. Examples of memory errors (buffer overflow and 

use-after-free). 

 

Various approaches are used to detect memory errors at 

early development stages, including code reviews, static 

analysis, managed languages, etc. [1]. One important class of 

tools is runtime memory checkers (“memory debuggers”) 

which combine high precision with cheap integration costs. 

A relatively new addition to runtime checkers family is 

AddressSanitizer (or shortly ASan) [2]. ASan is unique in 

that it has only 2x performance overhead and consumes 10% 

of memory which is unparalleled by prior technology 

(Valgrind, ASan’s most direct and popular competitor, 

incurs an overhead of 30x! [3]). ASan fully supports multi-

threading which is important for high-performance server 

applications.    
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ASan detects many classes of bugs. Notably it has been 

proven to find the infamous Heartbleed exploit in OpenSSL 

[4]. Current version of ASan is capable of detecting buffer 

overflows (in stack, heap and static memory), use-after-free 

and use-after-return, initialization order fiasco, memory 

leaks, trivial heap errors (double free, free-delete mismatch, 

etc.) and some other errors (memcpy parameter overlap, 

etc.). Summary comparison of ASan and other memory tools 

see in Table I. 

 

Table I. Comparison of memory tools. 

Feature \ Tool Valgrind 

Guard page 

tools (DUMA, 

Efence, etc.) 

ASan 

Technology 
Dynamic 

instrumentation 
Dynamic 

instrumentation 
Compile-time 

instrumentation 

Supported 
platforms 

Linux, Mac All All 

Overhead 20x 1x 2x 

Multithreading 
support 

No Yes Yes 

Heap overflow Yes Yes Yes 

Global overflow No No Yes 

Stack overflow No No Yes 

Use-after-free Yes Yes Yes 

Use-after-return No No Yes 

Memory leaks Yes Yes Yes 

ODR, init order 
violation 

No No Yes 

 

AddressSanitizer is based on a classic shadow memory 

approach to memory error detection which is also used in 

tools like Valgrind or kmemcheck. Shadow memory is a 

special memory region in program’s memory which holds 

information about state of user’s data i.e. which memory 

locations are unsafe to access and why [5]. ASan is using 8-

to-1 encoding (see Fig. 2) i.e. each 8-byte program word is 

mapped to 1 byte of shadow memory. This encoding allows 

efficient code generation particularly on 64-bit platforms 

(Fig. 3). 

 

 
Fig. 2. ASan memory encoding. 
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// Original code 

Type val = *address; 

 

//Instrumented code 

char *shadow_address = 0x20000000 + (address >> 3) 

char shadow_val = *shadow_address; 

char last_byte = (address & 7) + sizeof(Type) – 1; 

if (*shadow_val && last_byte >= *shadow_val) 

  ReportError(); 

Type val = *address; 
Fig. 3. ASan instrumentation. 

 

Contrary to Valgrind and Purify, ASan uses compile-time 

instrumentation to query and check shadow memory on each 

scalar memory access. This allows for much better 

optimization and removal of redundant computation 

resulting in better performance. ASan runtime library also 

intercepts many Glibc memory functions (memset, strcpy, 

etc.) to catch invalid memory accesses in them. 

To detect memory errors, AddressSanitizer pads various 

program objects (heap, stack and global variables) with 

poisoned (i.e. marked as inaccessible in shadow memory) 

redzones. Buffer overflow would cause program to access 

poisoned region and trigger runtime fault with a helpful error 

message. Poisoning/un-poisoning is done 

• for global variables – at program startup (via 

special hooks inserted by compiler) 

• for stack variables – in function prologue/epilogue 

(via special instrumentation code inserted by 

compiler) 

• for heap variables – in malloc/free and new/delete 

interceptors (located in ASan runtime library) 

An error message typically includes type and context of 

faulty memory access and a backtrace. Example (truncated) 

report is shown in Fig. 4. 
 

$ ./a.out  

====================================================== 

==11083==ERROR: AddressSanitizer: heap-buffer-overflow 

on address 0x60200000eff1 at pc 0x4007a8 bp 0x7ffd53cfb200 

sp 0x7ffd53cfb1f8 

WRITE of size 1 at 0x60200000eff1 thread T0 

    #0 0x4007a7 in main /home/ygribov/tmp.c:3 

    #1 0x7fc0b2ff9ec4 in __libc_start_main (/lib/x86_64-

linux-gnu/libc.so.6+0x21ec4) 

    #2 0x400688 (/home/ygribov/a.out+0x400688) 

 

0x60200000eff1 is located 0 bytes to the right of 1-byte 

region [0x60200000eff0,0x60200000eff1) 

allocated by thread T0 here: 

    #0 0x7fc0b33f17df in __interceptor_malloc 

(/usr/lib/x86_64-linux-gnu/libasan.so.1+0x547df) 

    #1 0x400767 in main /home/ygribov/tmp.c:2 

    #2 0x7fc0b2ff9ec4 in __libc_start_main (/lib/x86_64-

linux-gnu/libc.so.6+0x21ec4) 

 

SUMMARY: AddressSanitizer: heap-buffer-overflow 

/home/ygribov/tmp.c:3 main 

==11083==ABORTING 

Fig. 4. Example ASan report. 

II. LARGE-SCALE PROJECTS SANITIZING 

AddressSanitizer relies on standard and portable 

mechanisms like compiler flags, runtime interception of 

library functions and runtime tuning via environment 

variables. They work well for isolated software packages but 

may pose challenges when applied to a large software 

project like complete Linux distribution.  

Several months ago we have successfully applied 

AddressSanitizer to ARMv7-based embedded system with 

Tizen software stack. Tizen is a Linux distribution aimed at 

consumer electronics devices (mobile phones, TVs, IVI, 

etc.) [6]. It is a typical example of modern software platform 

and we thus believe that our experience would be helpful for 

maintainers of other distributions (like Ubuntu or Android) 

who consider using ASan in their work. 

Below we describe challenges met during sanitizing Tizen 

and how they were solved. 

A. Integration 

During ASan integration to Tizen we generally found that 

instead of doing things “properly” by modifying the platform 

build system core or package build scripts to match our 

requirements, it was much more efficient to work around 

arising problems. 

Such basic task as modifying compiler flags for several 

thousands of packages in a scalable way may be non-trivial 

because each package may modify or override compiler 

flags in unique way. Thus modification of default compiler 

flags was achieved by a crude compiler wrapper script (see 

Fig. 5) which never failed us since then. In addition to 

forced enablement of ASan, we also disabled common 

symbols and Glibc fortification as both cause ASan to miss 

important classes of bugs (erroneous accesses to global 

variables or via standard memory functions like memcpy). 

 
#!/bin/sh 

# Use readlink in order to follow symlinks if any 

REAL=$(readlink -f $0)-real 

if ! echo "$@" | grep -q ‘__KERNEL__\|-nostdlib’; then 

  $REAL "$@" -fsanitize=address -fno-common –

U_FORTIFY_SOURCE 

else 

  $REAL "$@" 

fi 
Fig. 5. Compiler wrapper for enabling ASan. 

 
Once integration to build system has been finished and we 

have successfully rebuilt most part (actually 99.5%) of 

distribution with ASan, we were finally able to run the 

system. However in runtime we initially faced another issues 

like false error messages. We discovered their cause in 

several ARM-specific bugs on compiler side. Once we fixed 

them ASan proved to be extremely robust. 

We also added some minor target-specific modification. 

E.g. in our case sanitized executables ran pretty early during 

system boot when proc partition (required by ASan to 

determine process memory layout, etc.) was not available. 

To address this, we updated ASan initialization code to 

mount /proc if necessary. 

B. Instrumentation Overhead 

Next to pure integration issues stands instrumentation 

overhead. Even though ASan is much more efficient than 

Valgrind, it provokes users to apply much more aggressively 

in new contexts (e.g. analyze full system under ASan). CPU 

overhead of 2x-3x is typically acceptable as it only results in 

moderate increase of QA time. Memory overhead is much 

more important – it may be unbearable for mobile devices 

with their limited amounts of RAM. 

After initial experiments we quickly ran into problems 

with increased memory consumption. Our target devices 

were designed with particular usage scenarios in mind so 

amount of available RAM was limited and there was no 

secondary storage for swap. We attacked this problem from 
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different angles. 

First of all, we used available ASan runtime options to 

reduce memory to minimum. ASan customization is done at 

runtime through environment variable ASAN_OPTIONS. 

We updated Tizen initialization scripts (/sbin/init.wrapper) 

to set the necessary options for all system processes: 

• malloc_context_size=2,fast_unwind_on_malloc=0 

(cap backtrace collection for malloc which is 

otherwise too slow and memory-heavy on most 

platforms) 

• quarantine_size=$((1<<15)) (reduce size of 

quarantine to 32K to reduce memory consumption) 

• start_deactivated=1 (do not enable ASan in non-

sanitized programs) 

In addition to above tweaks, we also enabled large swap 

on zram device [7]1. 

An alternative solution to memory overhead (which was 

quickly adopted by users) is to split full distribution to 

smaller parts and concentrate on most critical parts first (e.g. 

set uid daemons or apps which access private user data). By 

applying ASan to a subset of distribution at a time we could 

arbitrarily trim memory overhead at the cost of increased 

QA time (as QA tests will now have to be run N times, once 

per each chunk). Unfortunately such partitioning may in 

practice cause false negatives2. For example if we apply 

ASan to an executable which links against library which was 

not sanitized, then errors inside library code will go 

undetected. This happens due to nature of ASan’s 

instrumentation which requires that all source code (i.e. 

executable and all dependent libraries) is sanitized to 

achieve 100% error coverage. We are currently trying to 

automatically determine the minimal subset of distribution 

that would include all packages selected by user and all their 

dependencies (direct and transitive) required to detect all 

possible errors. 

We also reduced consumption of virtual memory by 

removing kernel area image from shadow memory region 

and trimming too aggressive memory allocation in ASan 

upstream (see Fig. 6). 

 
Resource Improvement 

Code size 25% 

Virtual memory 30% 

Performance 15% 

Fig. 6. Achieved ASan overhead reduction. 

 

Originally we didn’t pay much attention to CPU overhead 

but once users started to use ASan more, we ran into 

limitations for high-performance workloads. On ARMv7 

cores we were able to obtain a 25% code size reduction and 

a ~15% performance improvement on high loads by 

carefully tuning ASan instrumentation to our 32-bit ARM 

cores (we used ARM’s dominated conditional comparisons). 

Example of instrumentations before and after our 

optimization is given in Fig. 7. 

 
1 We also plan to experiment with swapping to USB and network disks. 
2 I.e. some errors may be missed. 

 
Fig. 7. Optimized instrumentation code. 

 

C. Other Limitations 

ASan’s internal complexity is another source of issues. Asan 

code has many non-obvious limitations, loosely described (if 

at all) in documentation, mailing lists or even code 

comments. These should be carefully studied to ensure that 

important errors don’t go undetected. 

For example an important and non-obvious source of ASan 

limitations are custom memory allocators used by many 

important packages e.g. OpenSSL or Glib2 [9]. By design, 

without additional assistance from user ASan can only detect 

errors in dynamic memory allocated via standard malloc/free 

or new/delete allocators. Any custom memory handling (e.g. 

simple free list on top of mmap) is thus unknown to ASan 

and most use-after-free or buffer overflow errors there will 

go undetected. Some libraries provide means to disable 

custom allocators (e.g. G_SLICE=always_malloc setting in 

Glib2) but for the most part this work has to be done by 

Tizen application developers who are interested in 

expanding coverage of their code. 

Finally, some ASan’s design choices may further complicate 

its usage. The most unpleasant one is the decision to abort 

execution after single error detection. This approach 

aggressively motivates developers to fix bugs in their code 

but at the same time significantly limits number of errors that 

can be detected during a single QA run. Given that asking 

developers to fix code, rebuilding and reinstalling updated 

firmware may take anything from minutes to days, this may 

significantly increase QA cycle. 

To avoid this we enabled new ASan runtime flag 

“keep_going” telling to continue execution after reporting an 

error instead of aborting. This allowed us to significantly 

increase our error detection rate and thus reduce integration 

costs. Looking back, we can confirm that lack of this feature 

would have significantly complicated adoption of ASan for 

QA. This flag is currently not available in mainline ASan 

(mainly due to maintainer’s opposition) but we’d like to 

commit it in future.  

D. Ideas For Improving Test Coverage 

Once ASan was adopted and developers started to use it 

on a regular basis, we found that number of error detections 

has quickly diminished. This of course didn’t mean that our 

software became bug-free but rather that coverage of our 

existing QA test suites was too narrow and they began to 

limit ASan’s ability to detect errors. We conclude that 

dynamic checkers like ASan heavily depend on existence of 

aggressive and evolving test systems. 

To detect more errors, we are currently exploring ways to 

increase our test coverage. One obvious approach is usage of 

fuzzing tools which have become very popular in recent 

years [8]. In addition to fuzzing, we also plan to strengthen 
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existing ASan checks by implementing more Glibc 

interceptors (e.g. bcopy, strrchr, etc.) and to experiment with 

more aggressive (and memory-hungry) ASan checks like 

detect_stack_use_after_return and 

check_initialization_order. We’d also like to extend ASan to 

cover less trivial constructs like va_args and thread-local 

storage. 

III. ASAN SOLUTION FOR LINUX KERNEL: KASAN 

In addition to Tizen, we also applied ASan to verification of 

Linux kernel. The solution named KernelAddressSanitizer 

(KASan) has been proposed by one of the authors to kernel 

community and successfully merged to mainline in version 

4.0 [10]. 

Compiler instrumentation for kernel case remains 

practically unchanged but runtime support has to be 

rewritten from scratch. Checking of global and stack 

variables is more or less similar but dynamic memory 

allocation is quite different. For one thing, kernel does not 

use standard malloc/free interface but rather several different 

allocators meant for different purposes: 

• Slab allocators (SLAB, SLOB, SLUB) 

• Vmalloc 

• Per-CPU variables 

• Page allocator 

• Memory pools 

For now we have only added support for SLUB allocator 

as this seems to be the most popular implementation of Slab 

for now. 

Initially, all objects allocated on SLUB-page are poisoned 

by KASan. Later, when SLUB-object is allocated, memory 

containing the object body is un-poisoned and the rest (e.g. 

SLUB-metadata) is marked poisoned (Fig. 8). 

 

 
Fig. 8. Sanitizing SLUB allocator. 

 

In recent versions of kernel we also added support for 

memory pools which are a simple construct on top of Slab. 

Support for other allocators (e.g. vmalloc) and memory 

quarantine (to detect use-after-free bugs) is pending. 

Apart from allocators, another major difference between 

userspace and kernel ASan is the bootstrap process. 

Instrumented code cannot be executed before shadow 

memory is initialized. In case of userspace, shadow memory 

setup is handled by runtime library before application start. 

Obviously we cannot do the same for kernel because the 

KASan runtime is a part of the kernel itself. Our solution is 

to have small un-instrumented code to setup the shadow. 

This code has to be executed before invocation of any 

instrumented code, therefore it executes at early stage of 

boot process. Proper initialization of shadow memory cannot 

be performed at such an early step – instead a special 

“shadow stub” is used. The stub is represented by a single 

zero page mapped to entire shadow memory region. After 

stub is set up, instrumented kernel is able to boot. No errors 

are detected at this stage as shadow memory is filled with 

zeros (which effectively means that no memory tracking is 

done). After linear memory mapping is ready, proper 

shadow memory can be set up to replace the stub. The 

sequence of shadow stub and shadow memory region 

initialization is shown at Fig. 9. 

 

 
Fig. 9. Usage of “shadow stub” until the shadow memory 

is correctly initialized. 

 

Compiler is able to instrument only C and C++ code. In 

opposite to most of userspace applications Linux kernel 

includes a lot of inline assembly code accessing memory. 

Thus, invalid accesses initiated by assembly code cannot be 

detected by KASan. To resolve the problem it is necessary 

to instrument most frequently used assembly functions 

manually. The functions are listed at Fig. 10. 

 

atomic_*() 

atomic64_*() 

test_*_bit() 

clear_bit() 

xchg() 

cmpxchg() 

cmpxchg_double*() 

Fig. 10. Frequently used inline assembly functions. 

 

ASan supports two types of code instrumentation. Outline 

instrumentation (historically the first) implies that every 

memory access is annotated with a function call to check 

shadow memory. For inline instrumentation, compiler 

directly inserts checking instructions before memory 

accesses. This can be much faster (up to 2x on some 

workloads) but increases code size. 

Generally KASan has 3–4 times performance overhead. 

The chart in Fig. 11 gives the idea of the overhead by 

comparing performance of ‘netperf -l 30’ command in 

normal kernel against instrumented ones. By default, 

sanitized kernel is built with outline instrumentation but this 

can be changed during kernel config. 

 

 
Fig. 11. ASan instrumentation overhead in kernel. 
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KASan is currently implemented only for x86_64 target 

but we work on ports to ARM and AArch64. 

A number of Linux kernel issues were found with the help 

of KASan. They include out-of-bounds pointer dereferences 

in integer ID management library, use-after-free issues in 

rmap and aio subsystems, various bugs in generic network 

layer, out-of-bounds access issues in SCSI, smack and 

scheduler code. 

The most known bug found using KASan is vulnerability 

in l2tp network layer allowing user privilege escalation 

(CVE-2014-4943). A fix to the issue can be evaluated as the 

most significant kernel fix of last seven years. 

IV. CONCLUSION 

While AddressSanitizer is a powerful and mature technology 

its integration to production software systems may not be 

easy as we discovered on examples of Tizen distribution and 

Linux kernel. Finally when AddressSanitizer is successfully 

integrated into QA process it undoubtedly helps to improve 

software quality by detecting memory corruptions. This 

article demonstrates problems we faced during ASan 

integration and provides technical solutions and some ideas 

for further improvements in this area. 
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