
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025 

 

 

105 

 

  

Abstract— Modern network applications commonly work in 

cloud environments, based on orchestration of hardware 
virtualization or containers. Design of such applications meets 

new security challenges related to their distributed 

architectures, the use of third-party components, deployment 

flexibility, and short life-cycle stages. These challenges require 

application security analysis to be continuous and automated. 

To implement the secure by design principle, automatic 

threat modeling based on threat/security patterns can be added 
to design secure applications. However, for a long time both 

threat modeling and threat/security patterns operate manual 

procedures and time consuming methods. Currently, 

automation in this field is still in the low maturity layer, caused 

by lack of experimental research and machine-readable data. 

Toward overcoming these challenges, the work researches 
an approach based on ontologies and knowledge graphs to 

automatically determine application architecture (functions, 

structure) from software deployment models for farther 

adding right patterns. In particular, an ontology-driven 

framework has been adopted for automatic semantic 
representation of multi-container applications (Docker 

Compose) and learning their architectures. To prove the 

effectiveness of semantic patterns, used to automatically detect 

application structures and functions, an open dataset of 200 

semantic diagram has been created. 

 
Keywords— Threat/security patterns, Threat modeling 

automation, Ontology, Knowledge graph, Container 
application, OWL, RDF, SPARQL, Docker Compose. 

I. INTRODUCTION 

Modern network applications are characterized by 

complexity and frequent modifications. Nowadays, most of 

applications work in cloud environments, based on 

orchestration of hardware virtualization or containers. The 

use of cloud technologies causes new security challenges. It 

is common for cloud applications to have distributed 

structures and include several remote components (services), 

what may cause security breaches via weak design of a 

particular service. Some of remote components might be 

uncontrolled by application's owner; such a third-part 

service may violate security via poor service level 

agreement. Also, an application might use local 

infrastructure at one stage of life-cycle (e.g. development), 

and it may move to cloud at another stage (e.g. operations), 

what changes threat landscape and requires its re-evaluating. 

 
Manuscript received August 12, 2025. 

Andrei Brazhuk (email: brazhuk@grsu.by) is with the Yanka Ku pala  
State University of Grodno, Republic of Belarus (st. Ozheshko, 22, Grodno, 
230023, Belarus) 

In cloud environments automatic software deployment 

techniques have been spread, in which a software 

deployment model in form of declarative configuration 

file(s) can be used to automatically run an application. Such  

an approach makes application life-cycle stages extremely 

short, what requires security analysis to be continuous and 

automated. 

As a way of implementing the secure by design principle 

[1], threat modeling can be added to tackle security 

challenges, related to application design, via identifying 

potential threats and devising appropriate security solutions 

[2, 3]. For a long time, this discipline has operated manual 

procedures and time consuming methods. Currently, its 

automation is still in the low maturity layer, caused by lack 

of experimental research and machine-readable data ([4 , 5 ]. 

However, the expansion of agile methodologies, CI/CD 

(Continuous Integration/Continuous Deployment), and 

DevOps (Development plus Operations) requires new 

approaches to the threat modeling automation [6, 7]. 

Another keystone of the secure by design implementation 

is collecting and leveraging the knowledge regarding 

application threats and safe architectural solutions. 

Threat/security patterns can be used as a source of 

structured security knowledge [8]. Either of them aims to 

formulate criteria, which help to determine relevance of a 

pattern for a particular system design. This makes the use o f  

threat/security patterns a promising strategy for the threat 

modeling automation. However, their automation seems to 

be an underrated research area [9]. Currently, adding 

patterns to a design has to be done by humans via an 

advanced methodology [10]. 

This work is moving toward automation of threat 

modeling based on threat patterns by filling the gap in the 

threat pattern contextualization. At early stages the 

automatic security analysis of an application supposes 

determining its architecture (functions, structure) for farther 

adding right patterns [11]. Applications can serve different 

functions: web applications, data  processing applications, 

financial services, machine learning services, etc, and they 

can utilize various design features. For example, a  web 

application may have a simple structure (e.g., comprising 

only a web server and a background database) or a 

sophisticated structure (e.g., comprising several web servers 

with a database behind a load balancer). For the simple web 

application, the ’web server - database’ flow could be 

affected by a set of threats, such as SQL injections [12], 

unauthorized access through publicly available network port  

of the database, and exploiting default administrator 

Automatic analysis of containerized application 

deployment models based on ontologies and 

knowledge graphs 

Andrei Brazhuk 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025 

 

 

106 

 

credentials used by the database. For the sophisticated web 

application, the flow ’load balancer - web server’ may 

produce extra threats, such as failure of the load balancer 

and HTTP Request Smuggling [13]. Flows like 'web server - 

database', 'load balancer - web server' can be considered as 

design primitives, bringing relevant sets of potential threats 

to an application. 

Considering automatic threat/security patterns 

contextualization for the use case of cloud application 

architectures, the primary Research Question (RQ) of the 

work is: 

RQ: How to enable the automatic analyse of application 

structures and functions from software deployment models?  

To address the research question, ontologies and 

knowledge graphs can be used in order to automatically 

learn functions and structures of real cloud applications [14]. 

Ontologies follow the object-oriented paradigm, in which a 

domain is thought as classes, objects and relations between 

objects. An ontology-driven framework enables a semantic 

representation of an application configuration both as an 

ontology in the OWL (Web Ontology Language) format and 

as a knowledge graph in the RDF (Resource Description 

Framework) format [11]. The ontological representation is 

used to perform intermediate automatic reasoning and infer 

extra facts about the configuration. The extra (implicit) 

knowledge allows to learn structures of applications and 

their security aspects from software deployment models. 

Docker Compose is a container platform tool, in 

particular, it enables description of applications in a single 

configuration file [15, 16]. Such software deployment 

models as raw data have been collected for this research. 

Software processing has been added to create ontologies and 

knowledge graphs from the Docker Compose 

configurations. To analyse application structure and 

functions, semantic templates have been used in form of 

SPARQL requests under the RDF representation of the 

configurations. A semantic template indicates the presence 

of a design primitive and therefore related set(s) of threats in  

the configuration. 

In summary, the work contributions are as follows: 

1) The ontology-driven framework has been adopted for 

automatic semantic representation of container applications 

and learning their structures and functions. 

2) An open dataset of 200 semantic diagrams based on 

real container applications has been generated to mitigate 

the lack of research data in this field. 

3) An experimental estimation based on the generated 

dataset has been conducted that proves the effectiveness of 

semantic patterns for automatic detection application 

structures and functions. 

II. LITERATURE REVIEW 

Currently, threat modeling is considered as a semi-

automatic process, added primarily at the requirements and 

design stages of a system lifecycle [17, 18]. Well-known 

manual methodologies tend to add more formalization to 

this process [19]. The efforts to solve the challenge of threat 

modeling automation are primary based on graph theory, 

Domain Specific Languages (DSL) and rule based 

languages [20], First Order Logic (FOL), Prolog, and Modal 

Logic [21]. Adding Machine Learning (ML), Neural 

Networks (NNs), and Large Language Models (LLMs) to 

the threat modeling is a great open challenge [22]. 

Another direction of the threat modeling automation is 

the use of ontologies and automatic reasoning. It is simpler 

than FOL and Prolog, follows the object-oriented paradigm, 

and can be easily extended via knowledge management 

means (OWL, RDF, SPARQL, SWRL). The idea  of the 

ontological approach has been described in works [23] and 

[24]. Work [11] has offered an ontology driven framework 

for automatic threat modeling and its use case for cloud 

systems. Recent researches on the ontology ba sed threat 

modeling are dedicated to the automation of security 

analysis of ICT Infrastructures [25], Amazon Cloud 

Infrastructure [26], and Cyber-Physical Systems [27]. 

The absence of research datasets and the lack of 

techniques to create such datasets is a  bottleneck of the 

threat modeling automation. Traditionally, Data Flow 

Diagrams (DFDs) are commonly used to describe a system 

structure for security analysis; and relevant publications 

dealing with DFDs operate only using dozens of diagrams 

[28, 29]. However, to prove the effectiveness of automatic 

threat modeling methods, it requires a dataset that includes 

at least hundreds of diagrams. 

Security and threat patterns seem to be an underrated 

research field [8]. Patterns represent a great way to 

formalize and use the security knowledge at the requirement  

and design stages of system life-cycle. However, those 

procedures typically have to be done by humans via 

advanced methodologies [10]. 

Several attempts are known towards the automation of 

security and threa t patterns. Work [30] proposed an 

ontology based catalog of security patterns. Research [31] 

aimed to collect and classify security patterns for connected 

vehicles in a structured way. Work [32] has described a 

method to detect the security patterns based on a distribu ted  

matrix matching technique. Recent work [33] proposes a 

framework for generation security cases from a list of 

security requirements based on security argument patterns. 

III. THE PROPOSED FRAMEWORK 

To address the work research question, an Ontology-

driven Threat Modeling (OdTM) framework has been used 

(https://github.com/nets4geeks/OdTM). The framework 

enables semantic representation of security related 

knowledge by creating OWL ontologies called Domain 

Specific Threat Models (DSTMs), each one enumerates 

typical components and associated threats for various types 

of computer systems (e.g., Cloud Computing, Internet of 

Things, Software Defined Networks). 

A structure of a particular computer system (which can be 

depicted as a diagram) can be represented as a semantic 

interpretation [11]. The semantic interpretation describes 

components of the system and relations between them as 

OWL ontology via the DFD terminology and some other 

domain-specific terminologies. 

The crucial item of the framework is a Base Threat Model 

(BTM), implemented as OWL ontology. The model contains 

necessary terminology to describe the diagram items, 

threats, and security labels. BTM can be used to create both 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025 

 

 

107 

 

semantic interpretations and DSTMs. 

Fig. 1 shows how the framework is mapped to the 

ontology driven analysis. 
 

 

Fig. 1. The framework structure 
 

The ontology driven approach is based on a Knowledge 

Base (KB). In general, KB consists of Terminology Box 

(TBox) and Assertion Box (ABox). In proposed framework, 

TBox includes the Base Threat Model and one or more 

Domain Specific Threat Models. The semantic interpretation 

is used as ABox. 

The automatic reasoning procedures are used on KB in 

order to infer extra facts about the diagram. The implicit 

knowledge can include possible threats to the system 

components. After automatic reasoning done, the KB, which  

represents the semantic diagram, can be saved as a 

knowledge graph in the RDF format. Software procedures 

are used to manipulate the modeling artifacts in order to 

enable the threat modeling process and obtain its results. 

Semantic templates aim to represent both the structure 

elements and their properties in a semantic diagram, which 

indicate the presence of some threat pattern(s) or point out 

the need to add some security pattern(s) to the system 

design. Semantic templates can be implemented as either 

ontology constructions or semantic requests to KB. 

To illustrate the used approach, a software deployment 

model in the form of a Docker Compose configuration file 

(docker-compose.yml) is considered [34]. Docker Compose 

enables a declarative description of several containers 

(services) as a multi-container application in a single file. 

The docker-compose.yml follows the YAML text format. 

Fig. 2 shows a docker-compose.yml file. It includes two 

services (’web’ and ’mongodb’), each one is implemented as 

a container. The ’image’ property indicates a basic image 

for a container (a software set required to run a service): the 

PHP development environment for ’web’ and the non-

relational database MongoDB for ’mongodb’. Also, 

declarations of the containers may include descriptions of 

their storage via the ’volumes’ property: ’web’ uses a host 

storage (’/app’), while ’mongodb’ uses the volume 

(’dbdata’) provided by the Docker engine. 

 

Fig. 2. An example of software deployment model 
 

Network connections can be described in a configuration 

file. In this example, the ’web’ container shares the TCP 

port 80, which indicates that a HTTP server will be run on 

the container (see the ’ports’ property). Also, relations 

between services can be described via the ’links’ and 

’depends_on’ properties: ’web’ depends on ’mongodb’, and 

’mongodb’ has a link to ’web’. 

A semantic diagram that may be depicted from the 

configuration is shown in Fig. 3. Note, no need exists of 

graphical representation for automatic threat modeling: data  

in the OWL and RDF formats are only required for that, so 

Fig. 3 may be used only for understanding of the process. 
 

Fig. 3. An example of semantic diagram 
 

To create the ontology by the software, the DFD 

terminology has been used from the Base Threat Model. The 

containers have become the ’Process’ instances: ’web’ as 

’process0’, and ’mongodb’ as ’process1’, shown as circles 

in DFD. Storage have been known as the ’Datastore’ 

instances (’hostStorage’, ’storage0’), shown as two lines. To 

represent remote interaction of the application, the ’user’ 

instance has been added, which has been assigned with the 

’ExternalInteractor’ and ’RemoteUser’ classes, and shown 

as a rectangle. 

Also, flows have been created. The ’flow0’ flow goes 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025 

 

 

108 

 

from ’user’ to ’process0’ because ’process0’ has an open 

network port. The ’flow1’ and ’flow2’ flows come from 

processes to their storages (’process0’ - ’hostStorage’, 

’process1’ - ’storage0’). The ’flow3’ flow goes from 

’process0’ to ’process1’ because ’process0’ depends on 

’process1’. The ’flow4’ flow comes from ’process1’ to 

’process0’ because of the link between them. All the flows 

are initially instances of the ’DataFlow’ class, and are 

shown as lines with arrows. 

Pieces of domain specific knowledge have been used to 

enrich the diagram. So, ’process0’ has an HTTP server 

running, and it is associated with the ’HTTPServer’ class. 

For that reason, ’flow0’ is labeled as the ’HTTPFlow’ 

instance. Also, ’process0’ belongs to the ’PHPEnvironment’ 

class in particular, and to the ’DevelopmentEnvironment’ 

class in general, because it runs a PHP interpreter. 

A domain ontology can be used to hold the domain 

specific knowledge. For example, the port 80 in a 

configuration indicates ’HTTPServer’; the ’php’ keyword 

points to the ’PHPEnvironment’ class; and latter is a  child of 

’DevelopmentEnvironment’. As a result, we have got the 

taxonomy that maps keywords from configuration files to 

classes of semantic diagrams. The domain ontology can be 

saved as a structured text file (YAML in this case). It also 

can be included into a Domain Specific Threat Model. 

Taking a decision of adding either threat or security 

pattern for a particular system design (architecture) is called 

a pattern contextualization. The contextualization depends 

on various factors, including relations between system 

components, presence of external entities, and properties of 

components. 

Specific interactions between system components, taking 

into account their properties, are called design primitives. 

Design primitives characterize various aspects of application 

architecture. 

Semantic templates are used to find design primitives in a 

diagram in order to automatically analyze its structure and 

functions. Results of such analysis can be used in the taking 

a decision for putting either security or threat patterns in the 

context. Semantic templates can be implemented as OWL 

axioms (equivalence and class assertions) or as SPARQL 

requests to the RDF representation of a semantic diagram. 

The Base Threat Model has a symmetric object property 

’relates’ that maps every two components that have a flow 

between them.  
 

 

Fig. 4. Web-based design primitives 
 

Fig. 4 shows some design primitives that can be used to 

analyze an application: (A) a simple web application based 

on two components, and (B) a complex web application 

with three components, related to each other. 

A semantic template for the (A) case as OWL axiom may 

be as shown in Listing 1. 
 

Listing 1. OWL based semantic template 

WebServer and ( relates some Database ) 
 

A semantic template for the (B) case represented as a 

SPARQL request may be as Listing 2 shows. 
 

Listing 2. SPARQL based semantic template 

SELECT ?target ?target1 ?target2 
WHERE { 

        ?target rdf:type :WebServer . 
        ?target1 rdf:type :DevelopmentEnvironment ; 

        b :relates ?target . 
        ?target2 rdf:type :Database ; 

        b :relates ?target1 . 
} 
ORDER BY ?target 

IV. THE DATASET OF SEMANTIC DIAGRAMS 

To tackle the problem of lack of open datasets that could 

be used for automatic threat modeling research, a dataset  o f  

200 semantic diagrams has been created. The dataset is 

based on configurations of real container applications and 

published via Github 

(https://github.com/nets4geeks/DockerComposeDataset). 

The Docker Compose configurations (docker-

compose.yml) have been used. Each docker-compose.yml 

file is a  software deployment model that may include several 

containers (services). The software deployment models have 

been obtained from public repositories, such as Github and 

Gitlab, through Google search requests. Also some 

enterprise repositories have been used (to keep the privacy 

and copyrights, source files were not published on the 

Github repository, only depersonalized artifacts are there). 

The primary criterion of taking a file into the dataset was the 

presence of two and more services in an application. 

To build the dataset, a  special software tool, written in 

Java, has been used. The tool is based on the OWL API 

library to manipulate OWL ontologies and RDF knowledge 

graphs. The Hermit library is used as an automatic reasoner. 

The Jackson library has been added to process the structured  

documents in the YAML format. 

Fig. 5 shows the outline of processing of a single 

configuration by the software tool. At the first stage a 

configuration of a container application is used as an input 

for software processing based on a domain ontology. A 

semantic interpretation as OWL ontology is an output there. 

The domain ontology is used to add extra facts about the 

configuration to the diagram. The entities may be associated  

with classes from the ontology that classify services (e.g. 

’SQLDatabase’, ’WebServer’, ’HTTPServer’), storages (e.g. 

’HostStorage’, ’DockerVolume’), flows (e.g. ’HTTPFlow’). 

The domain ontology was being created while the dataset 

was being formed. It is saved in the YAML format (the 

services2.yml file in the public repository). 

 

 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025 

 

 

109 

 

 

Fig. 5. Creating a semantic diagram 
 

The next stage is the automatic reasoning. The semantic 

diagram imports the Base Threat Model. Hermit performs 

reasoning and adds implicit knowledge to the semantic 

diagram. 

At the last stage, the software procedures save the 

inferred ontology (semantic diagram) as a knowledge graph 

in the RDF format. The use of RDF makes it easier adding 

the SPARQL requests in order to examine the diagram by 

various ’questions’ related to the application design and 

security. 

The software tool has been used to process 200 docker-

compose.yml files, and a dataset has been created that 

includes 200 semantic diagrams (the clear2 folder on 

Github). Each diagram is represented both as OWL ontology 

with the explicit knowledge and RDF graph with implicit 

knowledge. 

The dataset mitigates lack of research data in the 

automatic threat modeling field. Existing datasets operate by 

dozens of diagrams, in this dataset number of diagrams is 

increased to hundreds. The advantage of the dataset is that 

the data are represented in strict semantic format what 

enables their automatic intelligent processing. The dataset 

has been used in the experiment as a part of this work, and it  

could be used in various research in the automation threat 

modeling field. 

V. THE EXPERIMENT AND DISCUSSION 

To evaluate the effectiveness of the proposed approach, 

an experimental assessment has been conducted, in 

particular, it has been researched how to determine 

application type with semantic templates. 

Fig. 6 shows the experimental schema. At the first stage 

the configuration files have been classified by an expert 

according predefined criteria (application types). At the 

second stage the semantic diagrams, obtained from the 

configurations, have been classified automatically via 

semantic templates, corresponding to the given criteria. 

 

Fig. 6. Schema of the experiment 
 

The results of the experiment (precision and recall of the 

automatic classification) have been got via comparison with  

the expert classification. 

The expert in software engineering (design of 

microservices) was given 200 configurations of applications 

(the docker-compose.yml files). The expert had to map 

every configuration to predefined criteria. Each criterion 

(application type) characterizes both functions and 

structures of applications. 

The application types are: 

1. Web Application. A simple application that accessible 

via WWW and contains a background database. For 

example, it may include two containers - Nginx as 

HTTP/HTTPS server and Mysql as a database. 

2. Complex Web Application . A sophisticated web 

application based on database and including extra 

components like a development environment (PHP, Python, 

Ruby etc.). 

3. Data Processing. An application that aims either to 

collect data (e.g. includes a data collector like Filebeat) or to 

visualize data (e.g. includes Kibana). Both cases suppose the 

use of data storage, like document-oriental database 

(Elasticsearch) or relational database (like Mysql or 

Postgres). 

4. Complex Data Processing. A sophisticated data 

processing application that includes both collecting and 

visualizing components. 

Note, Complex Web Applications (2) have been 

automatically considered as Web Applications (1), because 

included their items. The Complex Data Processing (4) 

criterion has included Data Processing (3) as well. Also, 

some configurations have not been classified (27%), 

because they did not fall in any category from the expert 

viewpoint. 

Semantic templates have been used to automatically 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025 

 

 

110 

 

determine application functions and structures. As it is 

shown above, a semantic template allows to recognize 

relations between items of a diagram and represents some 

fragment of a knowledge graph of the diagram. Presence of 

a particular graph fragment in the diagram can indicate that 

the diagram belongs to some type. 

Templates corresponding to the expert criteria are shown 

in Table 1. The ’qa01-1’ and ’qa01-2’ templates indicate 

Web Application. The ’qa02’ and ’qa02a’ templates point to  

Complex Web Application. The ’qa03-1’ and ’qa03-2’ 

templates relate to Data Processing, and ’qa04’ - Complex 

Data Processing. The ’Semantic template’ column contains 

representations of templates as sequences of relations 

between the domain concepts based on the ’relates’ object 

property. 
 

Table 1. Semantic templates of container applications 

No ID Semantic template 

1 qa01-1 WebServer - Database 

2 qa01-2 DevelopmentEnvironment - Database 

3 qa02 WebServer - DevelopmentEnvironment - 

Database 

4 qa02a DevelopmentEnvironment - 

DevelopmentEnvironment - Database 

5 qa03-1 DataCollector - Database 

6 qa03-2 DataVisualizer - Database 

7 qa04 DataCollector - Database - DataVisualizer 
 

Automatic recognition of diagram types has been done in 

following way. Each semantic template was represented as a  

SPARQL request (see the Github repository, file names of 

the templates are the same as IDs in Table 1). Then the 

SPARQL requests were used under the RDF graphs of the 

diagrams via the Apache Jena tool in order to find the 

semantic templates. Shell scripts were used to calculate 

number of automatically detected types and compare them 

with the expert classification. 

Table 2 shows the experiment results. Statistics of the 

expert classification is depicted both in the ’Type’ column 

that contains the predefined application types, and the 

”Expert” column that contains amount of the configurations 

assigned to each application type by the expert. The 

’Templates’ column shows the semantic templates used to 

detect each application type. 
 

Table 2. Expert classification vs automatic classification 

 

A
p
p
li
ca

ti
o
n
 

ty
p
e 

S
em

an
ti
c 

te
m

p
la

te
s 

E
x
p
er

t 

cl
as

si
fi

ca
ti
o
n

 

D
et

ec
te

d
 

te
m

p
la

te
s 

 

P
o
si

ti
v
e 

P
re

ci
si

o
n

 

R
ec

al
l 

1 Web 
Application 

qa01-1 
qa01-2 

105 81 79 0.98 0.75 

2 Complex Web 
Application 

qa02 
qa02a 

33 26 26 1.00 0.79 

3 Data 
Processing 

qa03-1 
qa03-2 

40 30 30 1.00 0.75 

4 Complex 

Data 

Processing 

qa04 18 14 14 1.00 0.78 

 

Results of automatic classification are shown in 

following columns of Table 2. The ’Detected’ column 

counts the diagrams, in which a template has been found  by  

the Apache Jena tool. The ’Positive’ column shows amount 

of coincidences of the automatic classification with the 

expert classification. ’Precision’ is the fraction of the correct 

results to the number of automatic analysis results. ’Recall’ 

is the fraction of the automatically detected diagrams, 

containing a template, to the amount of the configurations of 

that type identified by the expert. 

The experiment results demonstrate high precision (up to 

100%) of the automatic analysis, and recall equals or more 

75% for every application type (see Table 2). This can be 

treated as a positive answer to RQ regarding the feasibility 

of automatic analysis of software deployment models. The 

automatic results have been verified vie the expert ’ground 

truth’. 

The results can be explained following way. The high 

precision (Table 2) is due to that the SPARQL queries act as 

deterministic filters, which select primary correct results, if 

there is a well-structured domain ontology. The exception of 

two false positive results for Web Applications may be 

explained by specific view of the expert to some 

configurations. 

Regarding the recall values (Table 2), it can be 

advocated that false negatives are caused by two reasons. 

Firstly, there are undetected relations between components. 

Specification of relations between container in Docker 

Compose is optional, so the ’DependFlow’ and ’LinkFlow’ 

relations are not enough. To recover missed relations 

various solutions may be added, up to graph link prediction, 

what is out of scope of this work. Secondly, the reason of 

false negatives may be a ’narrow’ domain ontology. The 

expert has much more knowledge about application 

components than the domain ontology represents. So, it can 

be some trade-off between the quality of the domain 

ontology and the effectiveness of the analysis. 

VI. CONCLUSIONS 

The work researches the approach, based on ontologies 

and knowledge graphs, to automatically determine 

application functions and structure from software 

deployment models. Recognition of design primitives, 

characterizing features of application architecture, using 

semantic patterns enables farther adding right threat/security 

patterns to the application design. 

Towards answering the research question the ontology-

driven framework has been adopted for automatic sem a nt ic 

representation of container applications and learning their 

architectures. To mitigate the lack of research data in this 

field, the dataset of 200 sema ntic diagrams based on multi-

container applications (Docker Compose) has been created. 

The experimental estimation based on created dataset has 

proven the high precision (up to 100%) and recall equals or 

more 75% of automatic recognition of application types. 

Note, both threat modeling and threat/security patterns 

automation is currently at initial stage. There are many 

challenges related to the security analysis automation of 

software deployment models and managing domain 

knowledge, in particular, keeping Domain Specific Threat 

Models, creating machine-readable catalogs of 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025 

 

 

111 

 

security/threat patterns, improving methods of pattern 

contextualization. So, the practical use of the work results 

depends on factors mentioned above and other ones. 

REFERENCES 

[1] Murat D., Berkan U., Ali I. An Overview of Secu re b y Des ign: 
Enhancing Systems Security through Systems Security En gin eer ing an d 
Threat Modeling //2024 17th International Conference o n In formation  
Security and Cryptology (ISCTürkiye). – IEEE, 2024. – С. 1-6. 

[2] Nadifi Z. et al. STRIDE-Based Threat Modeling and Risk 
Assessment Framework for IoT-enabled Smart Healthcare Systems 
//International Journal of Online & Biomedical Engineering. – 202 5.  –  Т .  

21. – №. 9. 
[3] Hammami A. The art of threat modeling //Jo urnal o f Co m pu ter  

Sciences and Informatics. – 2024. – Т. 1. – №. 1. – С. 57-57. 
[4] Yskout K. et al. Threat modeling: from infancy to maturity 

//Proceedings of the ACM/IEEE 42nd international conference on software 
engineering: New ideas and emerging results. – 2020. – С. 9-12. 

[5] Erceylan G., Akbarzadeh A., Gkioulos V. Balancing Au tom atio n 
and Human Involvement in Threat Modeling for Optimal Cyber Resilience 

//International Conference on Human-Computer Interaction. – Cham : 
Springer Nature Switzerland, 2025. – С. 234-244. 

[6] Grosse K. et al. Towards more practical threat models in artific ial 
intelligence security //33rd USENIX Security Symposium (USENIX 

Security 24). – 2024. – С. 4891-4908. 
[7] Steingartner W., Galinec D., Kozina A. Threat defense: Cyber 

deception approach and education for resilience in hybrid  th reats m odel 

//Symmetry. – 2021. – Т. 13. – №. 4. – С. 597. 
[8] Fernandez E. B. et al. Abstract security patterns and the design o f  

secure systems //Cybersecurity. – 2022. – Т. 5. – №. 1. – С. 7. 
[9] Cordeiro A., Vasconcelos A., Correia M. A catalog o f  s ecu rity 

patterns //Proceedings of 29th Conference on Pattern Languages of 
Programs, PLoP. – 2022. – С. 6-8. 

[10] Uzunov A. V., Fernandez E. B. An extensible pattern -based 
library and taxonomy of security threats for distributed systems //Computer 

Standards & Interfaces. – 2014. – Т. 36. – №. 4. – С. 734-747. 
[11] Brazhuk A. Threat modeling of cloud systems with o n to logical 

security pattern catalog //International Journal of Open Information 
Technologies. – 2021. – Т. 9. – №. 5. – С. 36-41. 

[12] Qu Z. et al. AdvSQLi: Generating Adversarial SQL In jectio ns 
against Real-world WAF-as-a-service //IEEE Transactions on Information  
Forensics and Security. – 2024. – Т. 19. – С. 2623-2638. 

[13] Pisu L. et al. HTTP/3 will not Save you from Request Smuggling: 
A Methodology to Detect HTTP/3 Header (mis) Validations //20 24 2 2 nd  
International Symposium on Network Computing and Applications (NCA). 
– IEEE, 2024. – С. 97-104. 

[14] Ryś A. et al. Model management to support systems engin eer ing 
workflows using ontology-based knowledge graphs //Journal of Industr ia l 
Information Integration. – 2024. – Т. 42. – С. 100720. 

[15] Eyvazov F. et al. Beyond containers: orchestrating microserv ices 

with minikube, kubernetes, docker, and compose for seamless deployment 
and scalability //2024 11th International Conference on Reliability, 
Infocom Technologies and Optimization (Trends and Future 
Directions)(ICRITO). – IEEE, 2024. – С. 1-6. 

[16] Aung L. H. et al. An Implementation of Web-Based Answer 
Platform in the Flutter Programming Learning Assistant System Using 
Docker Compose //Electronics. – 2024. – Т. 13. – №. 24. – С. 4878. 

[17] Konev A. et al. A survey on threat-modeling techniques: protected 
objects and classification of threats //Symmetry. – 2022. – Т. 14. – №. 3 . –  
С. 549. 

[18] Usman W., Zappala D. SoK: A framework and guide for hum an -
centered threat modeling in security and privacy r esearch //2 0 25 IEEE 
Symposium on Security and Privacy (SP). – IEEE, 2025. – С. 2697-2715. 

[19] Berger B. J., Plump C. Automatic security-flaw detection-towards 
a fair evaluation and comparison //Software and Systems Modeling. – 2025. 
– С. 1-34. 

[20] Malakhova D. et al. HarborLang: Enhancing Maritime 

Operational Safety Through Cyber Threat Simulation an d  Assessm en t 
//International Conference on Business Process Modeling,  Dev elopmen t 
and Support. – Cham : Springer Nature Switzerland, 2025. – С. 290-298. 

[21] Rouland Q., Hamid B., Jaskolka J. A model-driven formal 

methods approach to software architectural security vulnerabilities 
specification and verification //Journal of Systems and Software. – 2025.  –  
Т. 219. – С. 112219. 

[22] Laponina O. R., Kostin R. N. Threat Modeling Software 

Development for LLM-Agent-Based Systems //Internation al Jo u rn al o f 
Open Information Technologies. – 2025. – Т. 13. – №. 6. – С. 132-146. 

[23] Venkata R. Y., Kamongi P., Kavi K. An ontology-driven 

framework for security and resiliency in cyber physical systems //ICSEA. – 
2018. – Т. 2018. – С. 23. 

[24] Williams I. et al. An automated security concerns reco mmend er 
based on use case specification ontology //Automated Software 

Engineering. – 2022. – Т. 29. – №. 2. – С. 42. 
[25] De Rosa F. et al. Threma: Ontology-based automated threat 

modeling for ict infrastructures //IEEE Access. – 2022. – Т. 10. – С. 
116514-116526. 

[26] Cauli C. et al. Pre-deployment security assessment for cloud 
services through semantic reasoning //International Conference on 
Computer Aided Verification. – Cham : Springer International Publishin g,  
2021. – С. 767-780. 

[27] Blanco C. et al. Onto-CARMEN: Ontology-driven app roach fo r 
Cyber–Physical System Security Requirements meta-modelling and 
reasoning //Internet of Things. – 2023. – Т. 24. – С. 100989. 

[28] Luburić N. et al. A framework for teaching security des ign 

analysis using case studies and the hybrid flipped classroom //ACM 
Transactions on Computing Education (TOCE). – 2019. – Т. 19. – №. 3 .  –  
С. 1-19. 

[29] Tuma K. et al. Automating the early detection of security d esign 
flaws //Proceedings of the 23rd ACM/IEEE International Co nference o n  
Model Driven Engineering Languages and Systems. – 2020. – С. 332-342. 

[30] Pereira-Vale A., Fernandez E. B. An ontology for security patterns 

//2019 38th International Conference of the Chilean Co mp uter Scien ce 
Society (SCCC). – IEEE, 2019. – С. 1-8. 

[31] Marko N., Vasenev A., Striecks C. Collecting an d clas sify ing 
security and privacy design patterns for connected vehicles: SECREDAS 

approach //International Conference on Computer Safety, Reliability,  and  
Security. – Cham : Springer International Publishing, 2020. – С. 36-53. 

[32] Alvi A. K., Zulkernine M. Security pattern detection through 
diagonally distributed matrix matching //2022 9th International Conference 

on Dependable Systems and Their Applications (DSA). – IEEE, 2022. – С.  
390-402. 

[33] Zeroual M. et al. A Tool Support Methodology for Creating 

Security Cases Using Argument Patterns //Internation al Co n feren ce o n  
Model and Data Engineering. – Cham : Springer Nature Switzerland, 2024. 
– С. 82-90. 

[34] Brazhuk A. I., Olizarovich E. V. Ontological analysis in the 

problems of container applications threat modelling / Informatika 
[Informatics], 2023, vol. 20, no. 4, pp. 69−86 (In Russ.) 

 

 


