InternationalJournalof Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025

Automatic analysis of containerized application
deployment models based on ontologies and
knowledge graphs

Andrei Brazhuk

Abstract— Modern network applications commonly work in
cloud environments, based on orchestration of hardware
virtualization or containers. Design of such applications meets
new security challenges related to their distributed
architectures, the use of third-party components, deployment
flexibility, and short life-cycle stages. These challenges require
application security analysis to be continuous and automated.

To implement the secure by design principle, automatic
threat modeling based on threat/security patterns can be added
to design secure applications. However, for a long time both
threat modeling and threat/security patterns operate manual
procedures and time consuming methods. Currently,
automation in this field is still in the low maturity layer, caused
by lack of experimental research and machine-readable data.

Toward overcoming these challenges, the work researches
an approach based on ontologies and knowledge graphs to
automatically determine application architecture (functions,
structure) from software deployment models for farther
adding right patterns. In particular, an ontology-driven
framework has been adopted for automatic semantic
representation of multi-container applications (Docker
Compose) and learning their architectures. To prove the
effectiveness of semantic patterns, used to automatically detect
application structures and functions, an open dataset of 200
semantic diagram has been created.

Keywords— Threat/security patterns, Threat modeling
automation, Ontology, Knowledge graph, Container
application, OWL, RDF, SPARQL, Docker Compose.

I. INTRODUCTION

Modern network applications are characterized by
complexity and frequent modifications. Nowadays, most of
applications work in cloud environments, based on
orchestration of hardware virtualization or containers. The
use of cloud technologies causes new security challenges. It
is common for cloud applications to have distributed
structures and include several remote components (services),
what may cause security breaches via weak design of a
particular service. Some of remote components might be
uncontrolled by application's owner; such a third-part
service may violate security via poor service level
agreement. Also, an application might use local
infrastructure at one stage of life-cycle (e.g. development),
and it may move to cloud at another stage (e.g. operations),
what changes threat landscape and requires its re-evaluating.

Manuscript received August 12, 2025.

Andrei Brazhuk (email: brazhuk@grsu by) is with the Yanka Kupala
State University of Grodno, Republic of Belarus (st. Ozheshko, 22, Grodno,
230023, Belarus)

In cloud environments automatic software deployment
techniques have been spread, in which a software
deployment model in form of declarative configuration
file(s) can be used to automatically run an application. Such
an approach makes application life-cycle stages extremely
short, what requires security analysis to be continuous and
automated.

As a way of implementing the secure by design principle
[1], threat modeling can be added to tackle security
challenges, related to application design, via identifying
potential threats and devising appropriate security solutions
[2, 3]. For a long time, this discipline has operated manual
procedures and time consuming methods. Currently, its
automation is still in the low maturity layer, caused by lack
of experimentalresearch and machine-readable data ([4, 5].
However, the expansion of agile methodologies, CI/CD
(Continuous Integration/Continuous Deployment), and
DevOps (Development plus Operations) requires new
approachesto the threat modeling automation [6, 7].

Another keystone of the secure by design implementation
is collecting and leveraging the knowledge regarding
application threats and safe architectural solutions.
Threat/security patterns can be used as a source of
structured security knowledge [8]. Either of them aims to
formulate criteria, which help to determine relevance of a
pattern fora particularsystem design. This makestheuse of
threat/security patterns a promising strategy for the threat
modeling automation. However, their automation seems to
be an underrated research area [9]. Currently, adding
patterns to a design has to be done by humans via an
advanced methodology [10].

This work is moving toward automation of threat
modeling based on threat patterns by filling the gap in the
threat pattern contextualization. At early stages the
automatic security analysis of an application supposes
determining its architecture (functions, structure) for farther
adding right patterns [11]. Applications can serve different
functions: web applications, data processing applications,
financial services, machine learning services, etc, and they
can utilize various design features. For example, a web
application may have a simple structure (e.g., comprising
only a web server and a background database) or a
sophisticated structure (e.g., comprising several web servers
with a database behind a load balancer). For the simple web
application, the ’web server - database’ flow could be
affected by a set of threats, such as SQL injections [12],
unauthorized access through publicly available network port
of the database, and exploiting default administrator

105

InternationalJournalof Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025

credentials used by the database. For the sophisticated web
application, the flow ’load balancer - web server’ may
produce extra threats, such as failure of the load balancer
and HTTP Request Smuggling [13]. Flows like ‘web server -
database', 'load balancer - web server' can be considered as
design primitives, bringing relevant sets of potential threats
to an application.

Considering automatic threat/security patterns
contextualization for the use case of cloud application
architectures, the primary Research Question (RQ) of the
work is:

RQ: How to enable the automatic analyse of application
structures and functions from software deployment models?

To address the research question, ontologies and
knowledge graphs can be used in order to automatically
learn functionsand structures of real cloud applications [14].
Ontologies follow the object-oriented paradigm, in which a
domain is thought as classes, objects and relations between
objects. An ontology-driven framework enables a semantic
representation of an application configuration both as an
ontology in the OWL (Web Ontology Language) format and
as a knowledge graph in the RDF (Resource Description
Framework) format [11]. The ontological representation is
used to perform intermediate automatic reasoning and infer
extra facts about the configuration. The extra (implicit)
knowledge allows to learn structures of applications and
their security aspectsfrom software deployment models.

Docker Compose is a container platform tool, in
particular, it enables description of applications in a single
configuration file [15, 16]. Such software deployment
models as raw data have been collected for this research.
Software processing has been added to create ontologies and
knowledge graphs from the Docker Compose
configurations. To analyse application structure and
functions, semantic templates have been used in form of
SPARQL requests under the RDF representation of the
configurations. A semantic template indicates the presence
of a design primitive and therefore related set(s) of threatsin
the configuration.

Insummary, the work contributions are as follows:

1) The ontology-driven framework has been adopted for
automatic semantic representation of containerapplications
and learning theirstructures and functions.

2) An open dataset of 200 semantic diagrams based on
real container applications has been generated to mitigate
the lack of research datain thisfield.

3) An experimental estimation based on the generated
dataset has been conducted that proves the effectiveness of
semantic patterns for automatic detection application
structures and functions.

Il1. LITERATURE REVIEW

Currently, threat modeling is considered as a semi-
automatic process, added primarily at the requirements and
design stages of a system lifecycle [17, 18]. Well-known
manual methodologies tend to add more formalization to
this process [19]. The efforts to solve the challenge of threat
modeling automation are primary based on graph theory,
Domain Specific Languages (DSL) and rule based
languages [20], First Order Logic (FOL), Prolog, and Modal

Logic [21]. Adding Machine Learning (ML), Neural
Networks (NNs), and Large Language Models (LLMs) to
the threat modeling is a great open challenge [22].

Another direction of the threat modeling automation is
the use of ontologies and automatic reasoning. It is simpler
than FOL and Prolog, follows the object-oriented paradigm,
and can be easily extended via knowledge management
means (OWL, RDF, SPARQL, SWRL). The idea of the
ontological approach has been described in works [23] and
[24]. Work [11] has offered an ontology driven framework
for automatic threat modeling and its use case for cloud
systems. Recent researches on the ontology based threat
modeling are dedicated to the automation of security
analysis of ICT Infrastructures [25], Amazon Cloud
Infrastructure [26], and Cyber-Physical Systems [27].

The absence of research datasets and the lack of
techniques to create such datasets is a bottleneck of the
threat modeling automation. Traditionally, Data Flow
Diagrams (DFDs) are commonly used to describe a system
structure for security analysis; and relevant publications
dealing with DFDs operate only using dozens of diagrams
[28, 29]. However, to prove the effectiveness of automatic
threat modeling methods, it requires a dataset that includes
atleast hundreds of diagrams.

Security and threat patterns seem to be an underrated
research field [8]. Patterns represent a great way to
formalize and use the security knowledge atthe requirement
and design stages of system life-cycle. However, those
procedures typically have to be done by humans via
advanced methodologies [10].

Several attempts are known towards the automation of
security and threat patterns. Work [30] proposed an
ontology based catalog of security patterns. Research [31]
aimed to collect and classify security patterns for connected
vehicles in a structured way. Work [32] has described a
method to detect the security patternsbased on a distributed
matrix matching technique. Recent work [33] proposes a
framework for generation security cases from a list of
security requirements based on security argument patterns.

I1l. THE PROPOSED FRAMEWORK

To address the work research question, an Ontology-
driven Threat Modeling (OdTM) framework has been used
(https://github.com/nets4dgeeks/OdTM). The framework
enables semantic representation of security related
knowledge by creating OWL ontologies called Domain
Specific Threat Models (DSTMs), each one enumerates
typical componentsand associated threats forvarious types
of computer systems (e.g., Cloud Computing, Internet of
Things, Software Defined Networks).

A structure of a particularcomputersystem (which can be
depicted as a diagram) can be represented as a semantic
interpretation [11]. The semantic interpretation describes
components of the system and relations between them as
OWL ontology via the DFD terminology and some other
domain-specific terminologies.

The crucial item of the framework is a Base Threat Model
(BTM), implemented as OWL ontology. The modelcontains
necessary terminology to describe the diagram items,
threats, and security labels. BTM can be used to create both

106

InternationalJournalof Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025

semantic interpretationsand DSTMs.
Fig. 1 shows how the framework is mapped to the
ontology driven analysis.

Knowledge Base
(Semantic dlagram)

/A\

Domain specific
threat models

Automatic
reasoning

f

System
description

Threat
model

W

Software
procedures

Fig. 1. The framework structure

The ontology driven approach is based on a Knowledge
Base (KB). In general, KB consists of Terminology Box
(TBox) and Assertion Box (ABox). In proposed framework,
TBox includes the Base Threat Model and one or more
Domain Specific Threat Models. The semantic interpretation
is used as ABox.

The automatic reasoning procedures are used on KB in
order to infer extra facts about the diagram. The implicit
knowledge can include possible threats to the system
components. After automatic reasoningdone, the KB, which
represents the semantic diagram, can be saved as a
knowledge graph in the RDF format. Software procedures
are used to manipulate the modeling artifacts in order to
enable the threat modeling process and obtain its results.

Semantic templates aim to represent both the structure
elements and their properties in a semantic diagram, which
indicate the presence of some threat pattern(s) or point out
the need to add some security pattern(s) to the system
design. Semantic templates can be implemented as either
ontology constructionsor semantic requeststo KB.

To illustrate the used approach, a software deployment
model in the form of a Docker Compose configuration file
(docker-compose.yml) is considered [34]. Docker Compose
enables a declarative description of several containers
(services) as a multi-container application in a single file.
The docker-compose.ymlfollows the YAML text format.

Fig. 2 shows a docker-compose.yml file. It includes two
services ("'web’ and 'mongodb’), each one is implemented as
a container. The ’image’ property indicates a basic image
for a container (a software set required to run a service): the
PHP development environment for ’web’ and the non-
relational database MongoDB for ’mongodb’. Also,

declarations of the containers may include descriptions of
their storage via the volumes’ property: *web’ uses a host
storage (’/app’), while ’mongodb’ uses the volume
(’dbdata’) provided by the Docker engine.

Fig. 2. An example of software deployment model

Network connections can be described in a configuration
file. In this example, the "'web’ container shares the TCP
port 80, which indicates that a HTTP server will be run on
the container (see the ’ports’ property). Also, relations
between services can be described via the ’links’ and
’depends_on’ properties: web’ depends on 'mongodb’, and
'mongodb’ hasa link to *web’.

A semantic diagram that may be depicted from the
configuration is shown in Fig. 3. Note, no need exists of
graphical representation for automatic threat modeling: data
in the OWL and RDF formats are only required for that, so
Fig. 3 may be used only forunderstandingof the process.

soraged
hostStorage snvans
. DataStore
DataStore Contalnerolume
user HostStorage DockerVolume

Externalnteractor
RemoteUser

flow?

DataFlow
DataStorageFlow
adW Reflow

DataStorageFiow
ReadWriteFlow
flowd

DataFlow

NetworkFlow LinkFiow

HTTPFiow flow3 @
Process ntathin Process

Y DependFlow =

Container Cantairer
CloudAppication CoudApplication
PHPEn NoSQLDatabase
DevelopmentEnviranment Database
HTTPServer

Fig. 3. An example of semantic diagram

To create the ontology by the software, the DFD
terminology hasbeen used from the Base Threat Model. The
containers have become the ’Process’ instances: *web’ as
process0’, and 'mongodb’ as ’processl’, shown as circles
in DFD. Storage have been known as the ’Datastore’
instances (ChostStorage’, ’storage0’), shown as two lines. To
represent remote interaction of the application, the ’user’
instance has been added, which has been assigned with the
’Externallnteractor’ and ’RemoteUser’ classes, and shown
asa rectangle.

Also, flows have been created. The ’flow0’ flow goes

107

InternationalJournalof Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025

from ’user’ to ’process0’ because ’process0’ has an open
network port. The ’flowl’ and ’flow2’ flows come from
processes to their storages (’processO’ - ’hostStorage’,
processl’ - ’storage0’). The ’flow3” flow goes from
process0’ to ’processl’ because ’process0’ depends on
’processl’. The ’flow4’ flow comes from ’processl’ to
"process0’ because of the link between them. All the flows
are initially instances of the ’DataFlow’ class, and are
shown as lines with arrows.

Pieces of domain specific knowledge have been used to
enrich the diagram. So, ’process0’ has an HTTP server
running, and it is associated with the "THTTPServer’ class.
For that reason, ’flow0’ is labeled as the "HTTPFlow’
instance. Also, ’process0’ belongs to the 'PHPEnvironment’
class in particular, and to the ’DevelopmentEnvironment’
class in general, because it runs a PHP interpreter.

A domain ontology can be used to hold the domain
specific knowledge. For example, the port 80 in a
configuration indicates "HTTPServer’; the ’php’ keyword
points to the ’PHPEnvironment’ class; and latteris a child of
"DevelopmentEnvironment’. As a result, we have got the
taxonomy that maps keywords from configuration files to
classes of semantic diagrams. The domain ontology can be
saved as a structured text file (YAML in this case). It also
canbe included into a Domain Specific Threat Model.

Taking a decision of adding either threat or security
pattern for a particular system design (architecture) is called
a pattern contextualization. The contextualization depends
on various factors, including relations between system
components, presence of external entities, and properties of
components.

Specific interactions between system components, taking
into account their properties, are called design primitives.
Design primitives characterize variousaspectsof application
architecture.

Semantic templates are used to find design primitives in a
diagram in order to automatically analyze its structure and
functions. Results of such analysis can be used in the taking
a decision for putting either security or threat patterns in the
context. Semantic templates can be implemented as OWL
axioms (equivalence and class assertions) or as SPARQL
requests to the RDF representation of a semantic diagram.

The Base Threat Model has a symmetric object property
’relates’ that maps every two components that have a flow
between them.

A)

Fig. 4. Web-based design primitives

Fig. 4 shows some design primitives that can be used to
analyze an application: (A) a simple web application based
on two components, and (B) a complex web application
with three components, related to each other.

A semantic template for the (A) case as OWL axiom may
be asshown in Listing 1.

Listing 1. OWL based semantic template
WebServerand (relates some Database)

A semantic template for the (B) case represented as a
SPARQL request may be asListing 2 shows.

Listing 2. SPARQL based semantic template
SELECT ?target ?targetl ?target2
WHERE {
?targetrdf:type :WebServer.
?targetl rdf:type :DevelopmentEnvironment;;
b relates ?target .
?target? rdf:type :Database ;
b rrelates ?targetl .

}
ORDER BY ?target

IV. THE DATASET OF SEMANTIC DIAGRAMS

To tackle the problem of lack of open datasets that could
be used for automatic threat modelingresearch, a dataset of
200 semantic diagrams has been created. The dataset is
based on configurations of real container applications and
published via Github
(https://github.com/nets4geeks/DockerComposeDataset).

The Docker Compose configurations (docker-
compose.yml) have been used. Each docker-compose.yml
file is a software deployment modelthat may include several
containers (services). The software deployment modelshave
been obtained from public repositories, such as Github and
Gitlab, through Google search requests. Also some
enterprise repositories have been used (to keep the privacy
and copyrights, source files were not published on the
Github repository, only depersonalized artifacts are there).
The primary criterion of takinga file into the dataset wasthe
presence of two and more services in anapplication.

To build the dataset, a special software tool, written in
Java, has been used. The tool is based on the OWL API
library to manipulate OWL ontologies and RDF knowledge
graphs. The Hermit library is used as an automatic reasoner.
The Jackson library hasbeen added to process the structured
documentsin the YAML format.

Fig. 5 shows the outline of processing of a single
configuration by the software tool. At the first stage a
configuration of a container application is used as an input
for software processing based on a domain ontology. A
semantic interpretation as OWL ontology is an output there.
The domain ontology is used to add extra facts about the
configuration to the diagram. The entities may be associated
with classes from the ontology that classify services (e.g.
’SQLDatabase’, "WebServer’, '"HTTPServer’), storages (e.g.
"HostStorage’, ’DockerVolume’), flows (e.g. 'HTTPFlow’).
The domain ontology was being created while the dataset
was being formed. It is saved in the YAML format (the
services2.yml file in the public repository).

108

InternationalJournalof Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025

Deployment
model (YAML)

1

Software
processing

Domain
ontology >
(YAML)

Y
Semantic
interpretation
(OWL)

\/l/_\

Automatic
reasoning

Base threat
maodel (OWL)

Y

Y

Software
processing

Y

Knowledge graph
(RDF)

_/\.

Fig. 5. Creating a semantic diagram

The next stage is the automatic reasoning. The semantic
diagram imports the Base Threat Model. Hermit performs
reasoning and adds implicit knowledge to the semantic
diagram.

At the last stage, the software procedures save the
inferred ontology (semantic diagram) as a knowledge graph
in the RDF format. The use of RDF makes it easier adding
the SPARQL requests in order to examine the diagram by
various ’questions’ related to the application design and
security.

The software tool has been used to process 200 docker-
compose.yml files, and a dataset has been created that
includes 200 semantic diagrams (the clear2 folder on
Github). Each diagram is represented both as OWL ontology
with the explicit knowledge and RDF graph with implicit
knowledge.

The dataset mitigates lack of research data in the
automatic threat modeling field. Existing datasets operate by
dozens of diagrams, in this dataset number of diagrams is
increased to hundreds. The advantage of the dataset is that
the data are represented in strict semantic format what
enables their automatic intelligent processing. The dataset
hasbeen used in the experimentas a part of this work, and it
could be used in various research in the automation threat
modeling field.

V. THEEXPERIMENT ANDDISCUSSION

To evaluate the effectiveness of the proposed approach,
an experimental assessment has been conducted, in
particular, it has been researched how to determine
application type with semantic templates.

Fig. 6 shows the experimental schema. At the first stage
the configuration files have been classified by an expert
according predefined criteria (application types). At the
second stage the semantic diagrams, obtained from the

configurations, have been classified automatically via
semantic templates, corresponding to the given criteria.

Semantic
diagrams
{RDF)

Application Semantc

types

Applcation
confgurations templates

{SPARQL)

Software
tools

Expert

Maruasl
classiication

Automatic
classincation

Automatic
Inbels

\" Comparison

Fig. 6. Schema of the experiment

The results of the experiment (precision and recall of the
automatic classification) have been got via comparison with
the expert classification.

The expert in software engineering (design of
microservices) was given 200 configurations of applications
(the docker-compose.yml files). The expert had to map
every configuration to predefined criteria. Each criterion
(application type) characterizes both functions and
structures of applications.

The application typesare:

1. Web Application. A simple application that accessible
via WWW and contains a background database. For
example, it may include two containers - Nginx as
HTTP/HTTPS server and Mysql as a database.

2. Complex Web Application. A sophisticated web
application based on database and including extra
components like a development environment (PHP, Python,
Ruby etc.).

3. Data Processing. An application that aims either to
collect data (e.g. includes a data collector like Filebeat) or to
visualize data (e.g. includes Kibana). Both cases suppose the
use of data storage, like document-oriental database
(Elasticsearch) or relational database (like Mysqgl or
Postgres).

4. Complex Data Processing. A sophisticated data
processing application that includes both collecting and
visualizing components.

Note, Complex Web Applications (2) have been
automatically considered as Web Applications (1), because
included their items. The Complex Data Processing (4)
criterion has included Data Processing (3) as well. Also,
some configurations have not been classified (27%),
because they did not fall in any category from the expert
viewpoint.

Semantic templates have been used to automatically

109

InternationalJournalof Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025

determine application functions and structures. As it is
shown above, a semantic template allows to recognize
relations between items of a diagram and represents some
fragment of a knowledge graph of the diagram. Presence of
a particular graph fragment in the diagram can indicate that
the diagram belongs to some type.

Templates corresponding to the expert criteria are shown
in Table 1. The ’qa01-1" and ’qa01-2’ templates indicate
Web Application. The ’qa02’and ’qa02a’ templates point to
Complex Web Application. The ’qa03-1° and ’qa03-2’
templates relate to Data Processing, and ’qa04’ - Complex
Data Processing. The ’Semantic template’ column contains
representations of templates as sequences of relations
between the domain concepts based on the ’relates’ object

property.

Table 1. Semantic templates of container applications

No [ID Semantic template

1 ga0l-1 \WebServer - Database

2 ga01-2 DevelopmentEnvironment - Database

3 ga02 \WebServer - DevelopmentEnvironment -
Database

4 ga02a DevelopmentEnvironment -
DevelopmentEnvironment - Database

5 ga03-1 DataCollector - Database

6 ga03-2 DataVisualizer - Database

7 gao4 DataCollector - Database - DataVisualizer

Automatic recognition of diagram types hasbeen done in
following way. Each semantictemplate was represented asa
SPARQL request (see the Github repository, file names of
the templates are the same as IDs in Table 1). Then the
SPARQL requests were used under the RDF graphs of the
diagrams via the Apache Jena tool in order to find the
semantic templates. Shell scripts were used to calculate
number of automatically detected types and compare them
with the expert classification.

Table 2 shows the experiment results. Statistics of the
expert classification is depicted both in the "Type’ column
that contains the predefined application types, and the
”Expert” column that contains amount of the configurations
assigned to each application type by the expert. The
"Templates’ column shows the semantic templates used to
detect each application type.

Table 2. Expert classification vs automatic classification

c
5 2
= o9 5] n [t
= £2 (82 |22|2 |3 g
5 35 |6%|88|8 |8 |&
1 [Web gqa01-1 105 |81 79 098 |0.75
Application ga01-2
2 | Complex Web | ga02 33 26 26 |1.00 |0.79
Application ga02a
3 [Data ga03-1 |40 30 30 |1.00 |0.75
Processing ga03-2
4 | Complex ga04 18 14 14 (100 (0.78
Data
Processing

Results of automatic classification are shown in

following columns of Table 2. The ’Detected’ column
countsthe diagrams, in which a template hasbeen found by
the Apache Jena tool. The "Positive’ column shows amount
of coincidences of the automatic classification with the
expert classification. "Precision’ is the fraction of the correct
results to the number of automatic analysis results. 'Recall’
is the fraction of the automatically detected diagrams,
containing a template, to the amount of the configurations of
thattype identified by the expert.

The experiment results demonstrate high precision (up to
100%) of the automatic analysis, and recall equals or more
75% for every application type (see Table 2). This can be
treated as a positive answer to RQ regarding the feasibility
of automatic analysis of software deployment models. The
automatic results have been verified vie the expert "ground
truth’.

The results can be explained following way. The high
precision (Table 2) is due to that the SPARQL queries act as
deterministic filters, which select primary correct results, if
there is a well-structured domain ontology. The exception of
two false positive results for Web Applications may be
explained by specific view of the expert to some
configurations.

Regarding the recall values (Table 2), it can be
advocated that false negatives are caused by two reasons.
Firstly, there are undetected relations between components.
Specification of relations between container in Docker
Compose is optional, so the ‘DependFlow’ and ’LinkFlow’
relations are not enough. To recover missed relations
various solutions may be added, up to graph link prediction,
what is out of scope of this work. Secondly, the reason of
false negatives may be a ’narrow’ domain ontology. The
expert has much more knowledge about application
components than the domain ontology represents. So, it can
be some trade-off between the quality of the domain
ontology and the effectiveness of the analysis.

VI. CONCLUSIONS

The work researches the approach, based on ontologies
and knowledge graphs, to automatically determine
application functions and structure from software
deployment models. Recognition of design primitives,
characterizing features of application architecture, using
semantic patternsenables fartheraddingright threat/security
patternsto the application design.

Towards answering the research question the ontology-
driven framework hasbeen adopted forautomatic semantic
representation of container applications and learning their
architectures. To mitigate the lack of research data in this
field, the dataset of 200 semantic diagrams based on multi-
container applications (Docker Compose) has been created.
The experimental estimation based on created dataset has
proven the high precision (up to 100%) and recall equals or
more 75% of automatic recognition of application types.

Note, both threat modeling and threat/security patterns
automation is currently at initial stage. There are many
challenges related to the security analysis automation of
software deployment models and managing domain
knowledge, in particular, keeping Domain Specific Threat
Models, creating machine-readable catalogs of

110

InternationalJournalof Open Information Technologies ISSN: 2307-8162 vol. 13, no. 11, 2025

security/threat patterns, improving methods of pattern
contextualization. So, the practical use of the work results
dependson factorsmentioned above and otherones.

REFERENCES

[1] MuratD., Berkan U., Ali I. An Overview of Secure by Design:
Enhancing Systems Security through Systems Security Engineering and
Threat Modeling //2024 17th Intemational Conference on Information
Security and Cryptology (ISCTiitkiye). — IEEE,2024. — C. 1-6.

[2] Nadifi Z. et al. STRIDE-Based Threat Modeling and Risk
Assessment Framework for loT-enabled Smart Healthcare Systems
/lInternational Joumal of Online & Biomedical Engineering. —2025. — T.
21.—Ne. 9.

[3] Hammami A. Theart of threat modeling //Journal of Computer
Sciences and Informatics. —2024. — T.1.—Ne. 1.— C. 57-57.

[4] Yskout K. et al. Threat modeling: from infancy to maturity
/IProceedings of the ACM/IEEE 42nd international conference on software
engineering: New ideasand emerging results. — 2020. — C. 9-12.

[5] Erceylan G., Akbarzadeh A., Gkioulos V. Balancing Automation
and Human Involvement in Threat Modeling for Optimal Cyber Resilience
/lInternational Conference on Human-Computer Interaction. — Cham :
Springer Nature Switzerland, 2025.— C. 234-244.

[6] Grosse K. etal. Towards more practical threat modelsin artificial
intelligence security //33rd USENIX Security Symposium (USENIX
Security 24). —2024. — C. 4891-4908.

[7] Steingartner W., Galinec D., Kozina A. Threat defense: Cyber
deceptionapproachand education for resilience in hybrid threats model
/ISymmetry. —2021. — T.13.— Ne. 4. — C. 597.

[8] Fernandez E. B. et al. Abstract security patternsand the design of
secure systems//Cybersecurity. — 2022. — T.5.— Ne. 1.—-C. 7.

[9] Cordeiro A., Vasconcelos A., Correia M. A catalog of security
patterns //Proceedings of 29th Conference on Pattern Languages of
Programs, PLoP. —2022.—C. 6-8.

[10] Uzunov A. V., Fernandez E. B. An extensible pattern-based
library and taxonomy of security threats for distributed systems //Computer
Standards & Interfaces.— 2014. — T. 36. — Ne. 4.— C. 734-747.

[11] Brazhuk A. Threat modeling of cloud systems with ontological
security pattern catalog //International Journal of Open Information
Technologies. —2021. — T.9.— Ne. 5. - C. 36-41.

[12] Qu Z. etal. AdvSQL.i: Generating Adversarial SQL Injections
against Real-world WAF-as-a-service //IEEE Transactions on Information
Forensicsand Security. — 2024. — T.19.— C. 2623-2638.

[13] Pisu L. etal. HTTP/3 will not Save you from Request Smuggling:
A Methodology to Detect HTTP/3 Header (mis) Validations /2024 22nd
International Symposium on Network Computing and Applications (NCA).
—IEEE, 2024.—- C.97-104.

[14] Ry$ A. etal. Model management to support systemsengineering
workflows using ontology-based knowledge graphs //Journal of Industrial
Information Integration. — 2024. — T. 42. - C. 100720.

[15] Eyvazov F. et al. Beyond containers: orchestrating microservices
with minikube, kubernetes,docker, and compose for seamless deployment
and scalability /2024 11th International Conference on Reliability,
Infocom Technologies and Optimization (Trends and Future
Directions)(ICRITO).— IEEE, 2024.—C. 1-6.

[16] Aung L. H. et al. An Implementation of Web-Based Answer
Platform in the Flutter Programming Learning Assistant System Using
Docker Compose//Electronics. —2024.— T. 13.— Ne. 24. — C. 4878.

[17] Konev A. etal. A survey onthreat-modeling techniques: protected
objects and classification of threats //Symmetry. —2022.— T. 14.— Ne. 3. —
C.549.

[18] Usman W., Zappala D. SoK: A framework and guide for human -
centered threat modeling in security and privacy research //2025 IEEE
Symposiumon Security and Privacy (SP).— IEEE, 2025.— C. 2697-2715.

[19] Berger B. J., Plump C. Automatic security-flaw detection-towards
a fair evaluationand comparison//Software and Systems Modeling. — 2025.
—C.1-34.

[20] Malakhova D. et al. HarborLang: Enhancing Maritime
Operational Safety Through Cyber Threat Simulation and Assessment
/Nnternational Conferenceon Business Process Modeling, Development
and Support. — Cham : Springer Nature Switzerland, 2025.— C. 290-298.

[21] Rouland Q., Hamid B., Jaskolka J. A model-driven formal
methods approach to software architectural security vulnerabilities
specification and verification //Joumal of Systems and Software. — 2025. —
T.219.—-C.112219.

[22] Laponina O. R., Kostin R. N. Threat Modeling Software
Developmentfor LLM-Agent-Based Systems //Intemational Journal of
Open Information Technologies. —2025.— T. 13. — Ne. 6.— C. 132-146.

[23] Venkata R. Y., Kamongi P., Kavi K. An ontology-driven
framework for security andresiliency in cyber physical systems //ICSEA. —
2018.-T.2018.—C.23.

[24] Williams |.etal. An automated security concemsrecommender
based on use case specification ontology //Automated Software
Engineering. —2022. — T.29.— Ne. 2. - C. 42.

[25] De Rosa F. et al. Threma: Ontology-based automated threat
modeling for ict infrastructures //IEEE Access. —2022. - T. 10. — C.
116514-116526.

[26] Cauli C. et al. Pre-deployment security assessment for cloud
services through semantic reasoning //International Conference on
Computer Aided Verification.— Cham: Springer Intemational Publishing,
2021.-C.767-780.

[27] Blanco C. etal. Onto-CARMEN: Ontology-driven approach for
Cyber—Physical System Security Requirements meta-modelling and
reasoning//Intemet of Things. — 2023.— T. 24.— C. 100989.

[28] Luburi¢ N. et al. A framework for teaching security design
analysis using case studies and the hybrid flipped classroom //ACM
Transactions on Computing Education (TOCE). —2019.— T. 19.— Ne. 3. —
C.1-19.

[29] TumaK. etal. Automating the early detection of security design
flaws //Proceedings ofthe 23rd ACM/IEEE Intemational Conference on
Model Driven Engineering Languages and Systems. — 2020. — C. 332-342.

[30] Pereira-Vale A., Fernandez E. B. An ontology for security pattems
/12019 38th International Conference of the Chilean Computer Science
Society (SCCC). - IEEE,2019.—C. 1-8.

[31] MarkoN., Vasenev A., Striecks C. Collecting and classifying
security and privacy design patterns for connected vehicles: SECREDAS
approach //International Conference on Computer Safety, Reliability, and
Security. — Cham: Springer Intemnational Publishing, 2020.— C. 36-53.

[32] Alvi A. K., Zulkernine M. Security pattern detection through
diagonally distributed matrix matching /2022 9th Intemational Conference
on Dependable Systems and Their Applications (DSA).— IEEE, 2022. - C.
390-402.

[33] Zeroual M. et al. A Tool Support Methodology for Creating
Security Cases Using Argument Patterns//International Conference on
Model and Data Engineering. — Cham: Springer Nature Switzerland, 2024.
—C.82-90.

[34] Brazhuk A. 1., Olizarovich E. V. Ontological analysis in the
problems of container applications threat modelling / Informatika
[Informatics], 2023, vol. 20, no. 4,pp.69-86 (In Russ.)

111

